
Francisco Rica Romero

Astronomical Society of Mérida – Spain
Coordinator of LIADA’s Double Star Section – Argentina

frica0@gmail.es

Abstract: LIADA’s (Liga Iberoamericana de Astronomía) Double Star Section reports angular separations, position angles, V magnitudes and spectral types for 37 neglected visual double stars obtained in 2005. A total of 128 measures were averaged into 80 mean positions that range in separation from 3.12" to 348.74". Our observations were made by means of several techniques (CCD detectors, astrometric eyepieces, photographic plates, and astrometric catalogs). About 51% of double stars were unconfirmed pairs discovered by John Herschel which remained neglected since before 1850. BVIJHK photometries, astrometric, and kinematical data were used/obtained to determine astrophysical parameters (spectral types and luminosity classes, photometric distances, etc). The nature of the double stars were determined using several criteria classifying them as optical, physical, or common origin pairs. Only 5-6% were physical double stars. Two new systems were discovered.

Introduction

Very neglected and unconfirmed double stars were selected to design our observational programs. This sample of double stars have little astrophysical interest (from our historical analysis only about 5-10% are physical pairs), but the task of updating their parameters and characterizing them is important. Other objects studied were double stars discovered recently by the North-American Dave Arnold (ARN), the Hungarian T. Ladanyi & E. Berko (BKO) and the French A. Debackere (DBR).

We present 128 individual relative measures for 37 double stars which were performed using different techniques. These observations are averaged into 80 mean positions and angular separations, which ranges from 3.12" (for HJ 1410 AB) to 348.74" (for SMY 4 Aa-B). About 81% of the observed double stars were closer than 15". 19 of them (51%) were discovered by John Herschel and they have remained unconfirmed since 1820-1850!

From January 2005 through December 2005, CCD cameras, micrometric eyepieces, on-line surveys like the Digitized Sky Survey (DSS) and SuperCosmos Sky Survey (Hambly et al. 2001a,b,c), hereafter SCSS, astrometric catalogs like Two Micron All Sky Survey (Cutri et al. 2000), hereafter 2MASS, and AC2000 (Urban et al. 1998) were used to obtain relative astrometry.

23 double stars have been confirmed and of the unconfirmed double stars four of them could not be identified.

In 2005 we discovered 2 new wide common proper motion binaries (Figure 1). They are binaries composed by red dwarfs with high proper motions. FMR 17 is composed of weak stars of 17.0 (M1.5V) and 18.2 (M2.5V) magnitudes separated by 4.1". FMR 18 is composed of stars of 13.7 (M3.5V) and
15.9 (M4.0V) magnitudes separated by 16.2". The binary nature was determined by the common proper motion in addition to photometric data and they are physical binaries, gravitationally bound, orbiting each other. These systems were discovered during work carried out by Francisco Rica consisting of characterization of about 300 newly proper motion stars discovered in 1999 by the professional astronomer Wroblewsky (Wroblewski & Costa 1999).

We studied the nature of the programmed double stars. About 78% (29 pairs) were optical pairs, that is, pairs with unrelated members. About 5-6% were physical pairs (members orbit each other) or common proper motion pairs. The nature for about 16% could be not determined.

Confirmation of Visual Double Stars

The WDS catalog includes several thousand double stars that have only been measured at their discovery epoch and some hundreds of them have not been even resolved since before 1900. These double stars are unconfirmed and they need a second measure.

In the period between 2005 January to 2005 December, LIADA has confirmed the existence of 23 visual double stars.

There are several reasons for this neglect: poor coordinates or large proper motion, erroneous magnitude or delta-m estimates or truly neglected (it is nearly impossible to measure the large amount of neglected double stars due to the few constant observers).

Of all the unconfirmed double stars in the observing program, 4 were not identified. These pairs are shown in Table I. In the first and second columns, the WDS identifier and discover code with their sequential number are listed; in the followed columns, from left to right, are listed the magnitude for primary and secondary; in column (5) the epoch of the only measure; and in the last two columns, the relative astrometry, ρ and θ.

Measurements

Relative Astrometry

The results of 128 individual relative measures, averaged into 80 mean positions, made with different techniques, are listed in Table 3. These observations range in separation from 3.12" (for HJ 1410 AB) to 348.74" (for SMY 4 Aa-B).

From January 2005 through December 2005, CCD cameras, photographic plates, and astrometric catalogs were used to measure the relative astrometry of 37 binaries. 23 double stars have been confirmed. Of the doubles studied, 19 (51%) of them were discovered by John Herschel and have remained unconfirmed since 1820 and 1850!

Several observational techniques were used to obtain astrometry and photometry. Some astrometric catalogs were used: Astrographic Catalogue 2000,
HIPPARCOS, Tycho-2, Two Micron All Sky Survey and Sloan Digital Sky Survey.

CCD cameras were also used. Luis Lahuerta and Salvador Lahuerta are members of the Grupo de Estudio, Observación y Divulgación de la Astronomía (G.E.O.D.A.) and they worked from Manises’ Observatory (MPC-IAU Code J98) in Valencia (Spain). They used a S/C Meade LX200 telescope of 0.25 meters (10 inches) diameter and 2,500 mm (98.4 inches) focal length. A Starlight Xpress MX516 CCD chip with 500 x 290 pixels was used to obtain digital images. The size of the pixels are 9.8 x 12.6 μm. The Lahuertas brothers worked with an f6.3 focal reducer (with a JMI motofocus) resulting in a focal length of 1,478 mm (58.2 inches). The pixel size is 1.37 x 1.76 arcseconds and the filed of view is 11.39 x 8.50 arcminutes. For astrometry and photometry, they used Charon software and the GSC-ACT catalog.

Esteban Reina worked from the Astronomical Observatory of Masquefa - MPC 232, Barcelona (Spain) using a Meade LX200 with 0.25 m objective and a SBIG ST7 ME CCD.

Digitized photographic plates from the Digitized Sky Survey (DSS) and the SuperCosmos Sky Survey (SCSS) were also used for astrometry. Guide 6.0/7.0, Astrometrica and FitsView software were used for documentation and astrometry.

Table 3 lists relative astrometry for 37 double stars. In the first and second columns, the WDS identifier and discoverer code with their sequential numbers are listed; in the following columns, from left to right, the Besselian epoch of the astrometry; the number of measurements; the position angle and the angular separation; the V magnitude of the primary and secondary. If the magnitude listed has two decimal numbers these came from Tycho-2 (Hog et al. 2000) or else they came from calibrated GSC-I/GSC-II/USNO-B1.0 photometry or inferred by spectral distribution using JHK photometry. Next column, the spectral type and luminosity class estimated using photometric and kinematics data. Column 11 lists the observer code (see Table 2).

In column (13) the nature of the double star code is as follow: PHY = Physical; OPT = Optical; CO = Common Origin; CPM = Common Proper Motion; “?” = unknown; “--” = nature not studied. A “?” character at the end means that the nature listed is the most probable. In the last column the confirmed double stars show a “C” letter; a number indicates the years since the last measure. A “#” character followed by a number refers to a note number.

Spectral Types and Luminosity Class Estimates

Columns (9) and (10) of Table 3 list, for both components, the spectral types and luminosity classes estimated by the LIADA group. When the luminosity class is unknown, it is not listed in Table 3 and then the spectral type matches with the main sequence dwarf is listed.

The process to estimate spectral types and luminosity classes using BVJHK photometry and kinematical data were explained in detail in Rica (2005).

Table 3 lists 67 spectral types estimated by LIADA group, of them only 7 stars have spectral types (Continued on page 272)
Table 3: Relative Astrometry, Photometry, Spectral Data and Nature of Measured Double Stars

<table>
<thead>
<tr>
<th>WDS Id.</th>
<th>Discover + Num.</th>
<th>Epoch</th>
<th>N</th>
<th>θ (")</th>
<th>ρ (")</th>
<th>Vₐ</th>
<th>Vₙ</th>
<th>SPₐ</th>
<th>SPₙ</th>
<th>Obs.</th>
<th>Method</th>
<th>Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>03218+5904</td>
<td>ARN 61AB</td>
<td>1983.844</td>
<td>1</td>
<td>30.1</td>
<td>78.70</td>
<td>9.39</td>
<td>9.6</td>
<td>F9III: K/M III</td>
<td>F6V: 2MASS</td>
<td>2MASS</td>
<td>OPT?</td>
<td>#19</td>
<td></td>
</tr>
<tr>
<td>05032+2921</td>
<td>HJ 354AB</td>
<td>1999.900</td>
<td>1</td>
<td>296.0</td>
<td>12.05</td>
<td>11.2</td>
<td>11.8</td>
<td>K/M III</td>
<td>F9V: 2MASS</td>
<td>2MASS</td>
<td>OPT?</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>06024+5845</td>
<td>BK0 105AC</td>
<td>2000.030</td>
<td>1</td>
<td>264.4</td>
<td>19.39</td>
<td>11.9</td>
<td>13.1</td>
<td>K0: F6V</td>
<td>2MASS</td>
<td>2MASS</td>
<td>OPT?</td>
<td>C, 177</td>
<td></td>
</tr>
<tr>
<td>06071-0339</td>
<td>HJ 2295AB</td>
<td>2005.244</td>
<td>3</td>
<td>311.2</td>
<td>9.30</td>
<td>12.0</td>
<td>11.7</td>
<td>K III</td>
<td>K III</td>
<td>OMG</td>
<td>CCD</td>
<td>OPT?</td>
<td>C, 177</td>
</tr>
<tr>
<td>06087-0729</td>
<td>HJ 35AB</td>
<td>2005.244</td>
<td>3</td>
<td>56.1</td>
<td>12.68</td>
<td>11.6</td>
<td>12.0</td>
<td>G4</td>
<td>F6V</td>
<td>OMG</td>
<td>CCD</td>
<td>OPT?</td>
<td>#14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1999.725</td>
<td>1</td>
<td>38.8</td>
<td>10.14</td>
<td></td>
<td></td>
<td>2MASS</td>
<td>2MASS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2005.280</td>
<td>3</td>
<td>38.7</td>
<td>10.08</td>
<td></td>
<td></td>
<td>OMG</td>
<td>CCD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>06176-0620</td>
<td>HJ 37AB</td>
<td>1983.936</td>
<td>1</td>
<td>279.8</td>
<td>20.54</td>
<td>11.58</td>
<td>12.3</td>
<td>F6</td>
<td>K2III: FMR</td>
<td>DSS</td>
<td>OPT?</td>
<td>C, 177</td>
<td></td>
</tr>
<tr>
<td>06195+1220</td>
<td>STF 892AB</td>
<td>2005.244</td>
<td>1</td>
<td>40.8</td>
<td>39.46</td>
<td>10.44</td>
<td>10.65</td>
<td>K2V: A0</td>
<td>OMG</td>
<td>CCD</td>
<td>OPT</td>
<td>#3</td>
<td></td>
</tr>
<tr>
<td>06214+0014</td>
<td>HJ 727AB</td>
<td>2005.180</td>
<td>3</td>
<td>337.1</td>
<td>17.76</td>
<td>12.7</td>
<td>12.8</td>
<td>G6V</td>
<td>K3III</td>
<td>OMG</td>
<td>CCD</td>
<td>OPT</td>
<td>--</td>
</tr>
<tr>
<td>06215+0380</td>
<td>HJ 388AB</td>
<td>2005.244</td>
<td>3</td>
<td>142.0</td>
<td>75.50</td>
<td>11.6</td>
<td>11.8</td>
<td>F6V</td>
<td>G8V</td>
<td>OMG</td>
<td>CCD</td>
<td>OPT</td>
<td>#4</td>
</tr>
<tr>
<td>06336+2710</td>
<td>HJ 393AB</td>
<td>2005.244</td>
<td>3</td>
<td>248.0</td>
<td>14.06</td>
<td>11.2</td>
<td>12.1</td>
<td>K1III</td>
<td>F4V</td>
<td>OMG</td>
<td>CCD</td>
<td>OPT</td>
<td>#5</td>
</tr>
<tr>
<td>06386-1027</td>
<td>HJ 2327AB</td>
<td>1904.120</td>
<td>1</td>
<td>51.6</td>
<td>11.97</td>
<td>11.4</td>
<td>12.1</td>
<td>K4III</td>
<td>F3</td>
<td>AC2000</td>
<td>AC2000</td>
<td>OPT?</td>
<td>C, 177</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2005.280</td>
<td>3</td>
<td>47.1</td>
<td>12.19</td>
<td></td>
<td></td>
<td>OMG</td>
<td>CCD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>06394-0614</td>
<td>HJ 737AB</td>
<td>2005.280</td>
<td>3</td>
<td>247.9</td>
<td>15.25</td>
<td>10.05</td>
<td>11.8</td>
<td>F4V: F5V:</td>
<td>OMG</td>
<td>CCD</td>
<td>OPT</td>
<td>#6</td>
<td></td>
</tr>
<tr>
<td>06397+0034</td>
<td>HJ 2329AB</td>
<td>2005.280</td>
<td>3</td>
<td>86.6</td>
<td>17.25</td>
<td>10.89</td>
<td>11.87</td>
<td>F4V</td>
<td>A4</td>
<td>OMG</td>
<td>CCD</td>
<td>OPT</td>
<td>#7</td>
</tr>
<tr>
<td>07111+4954</td>
<td>BK0 108AC</td>
<td>1983.113</td>
<td>1</td>
<td>176.2</td>
<td>49.87</td>
<td>8.04</td>
<td>12.4</td>
<td>K3III</td>
<td>G7V:</td>
<td>FMR</td>
<td>DSS</td>
<td>OPT?</td>
<td>C</td>
</tr>
<tr>
<td>07120+3112</td>
<td>BK0 109AC</td>
<td>1998.895</td>
<td>1</td>
<td>261.3</td>
<td>11.29</td>
<td>12.1</td>
<td>13.2</td>
<td>F9V</td>
<td>F5V</td>
<td>2MASS</td>
<td>2MASS</td>
<td>OPT</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1952.083</td>
<td>1</td>
<td>46.3</td>
<td>27.22</td>
<td></td>
<td></td>
<td>DOS</td>
<td>SCSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1952.086</td>
<td>1</td>
<td>46.5</td>
<td>27.23</td>
<td></td>
<td></td>
<td>DOS</td>
<td>DSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1984.392</td>
<td>1</td>
<td>45.9</td>
<td>27.15</td>
<td></td>
<td></td>
<td>DOS</td>
<td>DSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1991.183</td>
<td>1</td>
<td>45.9</td>
<td>27.36</td>
<td></td>
<td></td>
<td>DOS</td>
<td>SCSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1993.155</td>
<td>1</td>
<td>45.9</td>
<td>27.57</td>
<td></td>
<td></td>
<td>DOS</td>
<td>SCSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1993.316</td>
<td>1</td>
<td>46.0</td>
<td>27.50</td>
<td></td>
<td></td>
<td>DOS</td>
<td>DSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1995.004</td>
<td>1</td>
<td>46.2</td>
<td>27.86</td>
<td></td>
<td></td>
<td>DOS</td>
<td>DSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13105+0339</td>
<td>HJ 1227AB</td>
<td>1956.190</td>
<td>1</td>
<td>130.3</td>
<td>28.80</td>
<td>11.57</td>
<td>15.4</td>
<td>G4V</td>
<td>G4</td>
<td>DOS</td>
<td>DSS</td>
<td>OPT</td>
<td>C, 172, 179</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1983.291</td>
<td>1</td>
<td>128.3</td>
<td>30.30</td>
<td></td>
<td></td>
<td>DOS</td>
<td>DSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1990.370</td>
<td>1</td>
<td>128.3</td>
<td>30.30</td>
<td></td>
<td></td>
<td>DOS</td>
<td>DSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1997.027</td>
<td>1</td>
<td>128.3</td>
<td>30.30</td>
<td></td>
<td></td>
<td>DOS</td>
<td>DSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2000.193</td>
<td>1</td>
<td>128.3</td>
<td>30.63</td>
<td></td>
<td></td>
<td>2MASS</td>
<td>2MASS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13304-1256</td>
<td>HJ 2656AB</td>
<td>1983.36</td>
<td>1</td>
<td>325.5</td>
<td>21.03</td>
<td>10.42</td>
<td>11.59</td>
<td>K4</td>
<td>K5</td>
<td>ARU</td>
<td>DSS</td>
<td>OPT</td>
<td></td>
</tr>
<tr>
<td>18367+3036</td>
<td>HJ 1330AB</td>
<td>1998.298</td>
<td>1</td>
<td>286.3</td>
<td>7.13</td>
<td>13.2</td>
<td>14.8</td>
<td>G9</td>
<td>K2</td>
<td>2MASS</td>
<td>2MASS</td>
<td>OPT</td>
<td>C, 179, 179</td>
</tr>
</tbody>
</table>

Table 3 continued on next page.
Table 3 (continued): Relative Astrometry, Photometry, Spectral Data and Nature of Measured Double Stars

<table>
<thead>
<tr>
<th>WDS Id.</th>
<th>Discover + Num.</th>
<th>Epoch</th>
<th>N</th>
<th>0 (º)</th>
<th>ρ (º)</th>
<th>VA</th>
<th>Vs</th>
<th>SPa</th>
<th>SPb</th>
<th>Obs.</th>
<th>Method</th>
<th>Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1950.546</td>
<td>1</td>
<td>6.2</td>
<td>25.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1997.497</td>
<td>1</td>
<td>6.4</td>
<td>25.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BVD</td>
<td>DSS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1997.497</td>
<td>1</td>
<td>6.4</td>
<td>25.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DSS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1999.604</td>
<td>1</td>
<td>4.7</td>
<td>25.69</td>
<td></td>
<td></td>
<td></td>
<td>2MASS</td>
<td>2MASS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1999.604</td>
<td>1</td>
<td>4.7</td>
<td>25.69</td>
<td></td>
<td></td>
<td></td>
<td>2MASS</td>
<td>2MASS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2005.640</td>
<td>3</td>
<td>4.7</td>
<td>25.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OMG</td>
<td>CCD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2005.640</td>
<td>3</td>
<td>4.7</td>
<td>25.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OMG</td>
<td>CCD</td>
<td></td>
</tr>
<tr>
<td>18553-2618</td>
<td>SMY 4Aa-B</td>
<td>1991.478</td>
<td>1</td>
<td>239.2</td>
<td>348.74</td>
<td>2.05</td>
<td>9.8</td>
<td>B2.5V</td>
<td>HIP</td>
<td>HIP</td>
<td>OPT</td>
<td>C, 170</td>
<td>#11</td>
</tr>
<tr>
<td>19078-1647</td>
<td>HJ 1363AB</td>
<td>2000.245</td>
<td>1</td>
<td>327.7</td>
<td>9.63</td>
<td>12.7</td>
<td>12.3</td>
<td>G7</td>
<td>F7</td>
<td>2MASS</td>
<td>2MASS</td>
<td>OPT?</td>
<td>C, 179</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2005.640</td>
<td>3</td>
<td>322.6</td>
<td>11.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OMG</td>
<td>CCD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1999.385</td>
<td>1</td>
<td>230.0</td>
<td>17.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2MASS</td>
<td>2MASS</td>
<td></td>
</tr>
<tr>
<td>19310+4050</td>
<td>HJ 1410AB</td>
<td>1998.412</td>
<td>1</td>
<td>248.2</td>
<td>3.12</td>
<td>12.8</td>
<td></td>
<td>M1V:</td>
<td></td>
<td></td>
<td>2MASS</td>
<td>2MASS</td>
<td>?</td>
</tr>
<tr>
<td>19362-0439</td>
<td>HJ 891AB</td>
<td>1998.722</td>
<td>1</td>
<td>16.8</td>
<td>11.86</td>
<td>11.6</td>
<td>12.9</td>
<td></td>
<td></td>
<td></td>
<td>2MASS</td>
<td>2MASS</td>
<td>OPT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2005.640</td>
<td>3</td>
<td>17.4</td>
<td>11.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OMG</td>
<td>CCD</td>
<td></td>
</tr>
<tr>
<td>19439+1528</td>
<td>HJ 1432AB</td>
<td>1997.559</td>
<td>1</td>
<td>208.7</td>
<td>7.53</td>
<td>12.9</td>
<td>12.9</td>
<td>G2</td>
<td>G8</td>
<td>2MASS</td>
<td>2MASS</td>
<td>--</td>
<td>C, 179, #14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2006.251</td>
<td>7</td>
<td>208.4</td>
<td>7.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ERE</td>
<td>CCD</td>
<td></td>
</tr>
<tr>
<td>19470+1232</td>
<td>HJ 1435AB</td>
<td>1991.690</td>
<td>1</td>
<td>296.4</td>
<td>13.24</td>
<td>11.82</td>
<td>11.62</td>
<td>F4</td>
<td>F8</td>
<td>2MASS</td>
<td>2MASS</td>
<td>OPT</td>
<td>C, 179, #15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1997.561</td>
<td>1</td>
<td>296.8</td>
<td>13.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2MASS</td>
<td>2MASS</td>
<td></td>
</tr>
<tr>
<td>19481+0523</td>
<td>HJ 2897AB</td>
<td>2000.600</td>
<td>1</td>
<td>330.7</td>
<td>8.11</td>
<td>12.1</td>
<td>13.2</td>
<td>K5</td>
<td>K4</td>
<td>2MASS</td>
<td>2MASS</td>
<td>?</td>
<td>C, 177</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2005.640</td>
<td>3</td>
<td>332.0</td>
<td>8.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OMG</td>
<td>CCD</td>
<td></td>
</tr>
<tr>
<td>19503+4126</td>
<td>HJ 1444AB</td>
<td>1998.393</td>
<td>1</td>
<td>302.8</td>
<td>10.16</td>
<td>12.9</td>
<td>12.4</td>
<td>F9</td>
<td>K/MIII</td>
<td>2MASS</td>
<td>2MASS</td>
<td>OPT?</td>
<td>C, 179, #16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2005.640</td>
<td>3</td>
<td>302.9</td>
<td>10.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OMG</td>
<td>CCD</td>
<td></td>
</tr>
<tr>
<td>19542+4104</td>
<td>HJ 1452AB</td>
<td>1998.391</td>
<td>1</td>
<td>234.9</td>
<td>8.09</td>
<td>11.8</td>
<td>12.5</td>
<td>K2III</td>
<td>F7</td>
<td>2MASS</td>
<td>2MASS</td>
<td>OPT</td>
<td>C, 179</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2005.640</td>
<td>3</td>
<td>235.7</td>
<td>8.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OMG</td>
<td>CCD</td>
<td></td>
</tr>
<tr>
<td>19543+3210</td>
<td>HJ 1451AB</td>
<td>1998.356</td>
<td>1</td>
<td>231.6</td>
<td>10.73</td>
<td>10.08</td>
<td>11.6</td>
<td>A4</td>
<td>F5</td>
<td>2MASS</td>
<td>2MASS</td>
<td>OPT?</td>
<td>C, 179, #17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2005.640</td>
<td>3</td>
<td>231.4</td>
<td>10.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OMG</td>
<td>CCD</td>
<td></td>
</tr>
</tbody>
</table>

Table 3 continued on next page.
Study of Neglected Double Stars by LIADA Double Star Section in 2005, II ...

Notes:
1. A detailed study about FMR 17 and FMR 18 will be published in the next number of JDSO.
2. Magnitudes came from “Extension of ICRF for selected areas down to V=16” (Camargo et al. 2003).
3. STF 892: located at 5.8 arc minutes from WDS position; the accurate coordinate is: 06h 19m 51.50s +12d 17' 34.50". Spectral types determined in this work: K2V: for primary and A0 for secondary. Henry Draper Catalog lists K0 and A7. In the catalog "Stellar Spectra in Milky Way Regions. VIII. A region in Orion" (McCuskey 1959) lists G8V and B8. Thereddening calculated in this work is E(B-V) = 0.01 (using others reddening maps a value E(B-V) < 0.1 was obtained).
4. Has 3 measures listed in WDS, the last one in 1982 (143 degrees and 24.6")
5. Has 4 measures listed in WDS, the last one in 1998 (249 degrees and 14.1°). The main component is HD 259348 with spectral type K0 (Henry Draper Catalog).
6. Has 4 measures listed in WDS, the last one in 1998 (248 degrees and 15.4°). Incompatible proper motion for the components: optical double star. Luis Lahuerta and Salvador Lahuerta detected a weak star with 13.5 magnitude at 14.42” in direction 216.2 degrees. From JHK photometry it is a F6 star.
7. Has 4 measures listed in WDS, the last one in 2000 (87 degrees and 17.2")

<table>
<thead>
<tr>
<th>WDS Id.</th>
<th>Discover + Num.</th>
<th>Epoch</th>
<th>N</th>
<th>0 (°)</th>
<th>ρ (")</th>
<th>VA</th>
<th>Vs</th>
<th>SpA</th>
<th>SpB</th>
<th>Obs.</th>
<th>Method</th>
<th>Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>19569+0816</td>
<td>HJ 2847 AB</td>
<td>1991.548</td>
<td>1</td>
<td>43.7</td>
<td>13.98</td>
<td>10.83</td>
<td>10.76</td>
<td>F5</td>
<td>A9</td>
<td>ARU</td>
<td>DSS</td>
<td>OPT</td>
<td>C, 177, #18</td>
</tr>
<tr>
<td>1995.557</td>
<td>1</td>
<td>45.3</td>
<td>14.01</td>
<td>ARU</td>
<td>DSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000.562</td>
<td>1</td>
<td>44.1</td>
<td>14.94</td>
<td>2MASS</td>
<td>2MASS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005.640</td>
<td>1</td>
<td>44.2</td>
<td>14.89</td>
<td>OMG</td>
<td>CCD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20502-0640</td>
<td>FMR 17AB</td>
<td>1998.804</td>
<td>1</td>
<td>331.7</td>
<td>4.09</td>
<td>17.02</td>
<td>18.24</td>
<td>M1.5V</td>
<td>M2.5V</td>
<td>2MASS</td>
<td>2MASS</td>
<td>PHY</td>
<td>#1, new</td>
</tr>
<tr>
<td>2000.673</td>
<td>1</td>
<td>332.5</td>
<td>4.16</td>
<td>SDSS</td>
<td>SDSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22117-2044</td>
<td>FMR 18AB</td>
<td>1977.546</td>
<td>1</td>
<td>304.0</td>
<td>13.02</td>
<td>13.7</td>
<td>15.9</td>
<td>M3.5V</td>
<td>M4.0V</td>
<td>FMR</td>
<td>DSS</td>
<td>PHY</td>
<td>#1, new</td>
</tr>
<tr>
<td>1984.774</td>
<td>1</td>
<td>305.6</td>
<td>12.75</td>
<td>FMR</td>
<td>DSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1991.753</td>
<td>1</td>
<td>302.6</td>
<td>12.87</td>
<td>FMR</td>
<td>DSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994.774</td>
<td>1</td>
<td>302.8</td>
<td>12.93</td>
<td>FMR</td>
<td>DSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998.504</td>
<td>1</td>
<td>299.7</td>
<td>16.15</td>
<td>FMR</td>
<td>DSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23046+5122</td>
<td>DBR 2AB</td>
<td>1983.675</td>
<td>1</td>
<td>94.1</td>
<td>12.05</td>
<td>11.71</td>
<td>12.8</td>
<td>K1III</td>
<td>K2III</td>
<td>FMR</td>
<td>DSS</td>
<td>OPT</td>
<td>#1</td>
</tr>
<tr>
<td>1983.675</td>
<td>1</td>
<td>93.9</td>
<td>12.16</td>
<td>FMR</td>
<td>DSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23049+5119</td>
<td>DBR 3AB</td>
<td>1954.583</td>
<td>1</td>
<td>32.6</td>
<td>23.16</td>
<td>11.3</td>
<td>13.2</td>
<td>FMR</td>
<td>DSS</td>
<td>OPT</td>
<td>#2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1983.675</td>
<td>1</td>
<td>31.4</td>
<td>23.16</td>
<td>FMR</td>
<td>DSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1983.675</td>
<td>1</td>
<td>31.5</td>
<td>23.39</td>
<td>FMR</td>
<td>DSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3 (conclusion): Relative Astrometry, Photometry, Spectral Data and Nature of Measured Double Stars

Notes:
1. A detailed study about FMR 17 and FMR 18 will be published in the next number of JDSO.
2. Magnitudes came from “Extension of ICRF for selected areas down to V=16” (Camargo et al. 2003).
3. STF 892: located at 5.8 arc minutes from WDS position; the accurate coordinate is: 06h 19m 51.50s +12d 17' 34.50". Spectral types determined in this work: K2V: for primary and A0 for secondary. Henry Draper Catalog lists K0 and A7. In the catalog "Stellar Spectra in Milky Way Regions. VIII. A region in Orion" (McCuskey 1959) lists G8V and B8. The reddening calculated in this work is E(B-V) = 0.01 (using others reddening maps a value E(B-V) < 0.1 was obtained).
4. Has 3 measures listed in WDS, the last one in 1982 (143 degrees and 24.6")
5. Has 4 measures listed in WDS, the last one in 1998 (249 degrees and 14.1°). The main component is HD 259348 with spectral type K0 (Henry Draper Catalog).
6. Has 4 measures listed in WDS, the last one in 1998 (248 degrees and 15.4°). Incompatible proper motion for the components: optical double star. Luis Lahuerta and Salvador Lahuerta detected a weak star with 13.5 magnitude at 14.42” in direction 216.2 degrees. From JHK photometry it is a F6 star.
7. Has 4 measures listed in WDS, the last one in 1982 (143 degrees and 24.6")
8. Double star located at 6 arcminute from WDS position. The accurate coordinate is AR: 13h 10m 18.09s and DEC: +03d 25' 16.04".
9. Doubtful identification. Double star located at 5.4 arc minutes from WDS position. The accurate coordinate is AR: 13h 10m 18.09s and DEC: +03d 25' 16.04".
10. A is a F0V star [Michigan Catalog, vol.5, Houk 1999]; In Milky Way; possible large reddening. LIADA not corrected by reddening.
11. A is a B2.5V star. It has a close companion to < 0.1 arcsec in direction 202 degrees (only measured in 1991).
12. UCAC2 lists combined proper motion of +41±5 and +33±2 mas/yr.
13. The accurate coordinate is 19h 36m 10.92s -4d 38' 25.52".
15. The accurate coordinate is 19h 46m 58.44s +12d 31' 43.9".
16. The accurate coordinate is 19h 50m 14.70s +41d 31' 28.7".
17. A = HD 331501; in literature A is a A0 star [Neterov et al. 1995]; In Milky Way; possible large reddening. not corrected by reddening.
18. A weak star of 14.4 magnitude was observed at 6.2 arc seconds to A in direction of 225 degrees. From JHK 2MASS photometry, in this work we deter-
mined a spectral type of G. The nature of this pair could not be determined due to lack of data.

19. Discovered in 2003 (Arnold 2004) by the amateur Dave Arnold (33 deg and 79 arcsec). Their components are F8 (PPM catalog) and M1 (“Catalogue of Stellar Spectral Classification”) stars according to the literature. In this work I obtained spectral types of F9III and M4III. Hipparcos parallax likely is in error because the distance is not in agreement with the spectral type determined in this work.

20. Discovered in 2003 by Hungarian amateurs (264 deg and 19.2 arcsec). In this work I obtained spectral types of G/K and F6V.

Finally the photometric and astrometric data are analyzed using several methods or criteria that allow us to classify visual double stars according to their nature (Benavides et al. 2010).

Table 3 shows in column (13) the conclusion of this study. Of the 37 visual double stars measured, LIADA studied the nature of all of them but HJ 1432 AB. About 78% (29 visual double stars) were optical or optical suspected while only 5-6 % (2 doubles) were physical or physical suspected. No common origin pairs were found.

About 14 % of the visual double stars have an undetermined nature due to insufficient or no accurate data and more astrometric and photometric data are needed. Figure 2 shows the distribution of the nature of double stars studied by LIADA. The results have been very similar to those of the last year. As in previous surveys the very low percent of physical pairs did not surprise us because we previously knew of the low astrophysical interest in long neglected and unconfirmed visual double stars where the most of them are bona-fide or candidate optical pairs.

Acknowledgments

This report made use of data from the Two Micron All Sky Survey (2MASS), which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation.

Table 4: Comparison between LIADA’s spectral types and spectral types in the literature

<table>
<thead>
<tr>
<th>Name#1</th>
<th>Name#2</th>
<th>Mg V</th>
<th>Sp_Lit</th>
<th>Sp_LIADA</th>
<th>Differ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSC 739-1246</td>
<td>STF 892 A</td>
<td>10.44</td>
<td>G8V</td>
<td>R2V</td>
<td>-4</td>
</tr>
<tr>
<td>HD 173724</td>
<td>HJ 5502 A</td>
<td>9.46</td>
<td>F5V</td>
<td>F8V</td>
<td>-3</td>
</tr>
</tbody>
</table>

Note.- The spectral type for HJ 5502 A estimated by LIADA was corrected by reddening (calculated in this work) of E(B-V) = 0.10.
The Guide Star Catalog-I was produced at the Space Telescope Science Institute under a U.S. Government grant. These data are based on photographic data obtained using the Oschin Schmidt Telescope on Palomar Mountain and the UK Schmidt Telescope. The Guide Star Catalogue-II is a joint project of the Space Telescope Science Institute and the Osservatorio Astronomico di Torino. Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, for the National Aeronautics and Space Administration under contract NAS5-26555. The participation of the Osservatorio Astronomico di Torino is supported by the Italian Council for Research in Astronomy. Additional support is provided by European Southern Observatory, Space Telescope European Coordinating Facility, the International GEMINI project and the European Space Agency Astrophysics Division.

The Digitized Sky Survey was produced at the Space Telescope Science Institute under U.S. Government grant NAG W-2166. The images of these surveys are based on photographic data obtained using the Oschin Schmidt Telescope on Palomar Mountain and the UK Schmidt Telescope. The plates were processed into the present compressed digital form with the permission of these institutions. This research is based on data from the SuperCOSMOS Sky Surveys (SSS) at the Wide-Filed Astronomy Unit of the Institute for Astronomy, University of Edinburgh.

This publication has made use of the Washington Double Star Catalog, UCAC2 and USNO-B1.0 maintained at the U.S. Naval Observatory.

The data mining required for this work has been made possible with the use of the SIMBAD astronomical database and VIZIER astronomical catalogs service, both maintained and operated by the Center de Données Astronomiques de Strasbourg (http://cdsweb.u-strasbg.fr/)

References
Houk N., Swift C., 1999, Department of Astronomy, University of Michigan, Ann Arbor, Michigan.
Rica, F. 2005, JDSO, 1, 1.