Study of Neglected Double Stars by LIADA Double Star Section in 2004, II: Astrometry, Astrophysical Properties and Nature.

Francisco Rica Romero

Astronomical Society of Mérida – SPAIN Coordinator of LIADA's Double Star Section – ARGENTINA

Email: frica0@gmail.com

Abstract: LIADA's (Liga Iberoamericana de Astronomía) Double Star Section presents angular separations, position angles as well as V magnitudes for 113 neglected visual double stars obtained in 2004. A total of 548 measures were averaged into 246 mean positions that range in separation from 2.6" to 421.9". Our observations were made by means of several techniques (CCD detectors, astrometric eyepieces and photographic and digital surveys). About 31% of the double stars were unconfirmed pairs discovered by John Herschel which remained neglected since before 1850. BVIJHK photometries, astrometric and kinematical data were used/obtained to determine astrophysical parameters (spectral types and luminosity classes, photometric distances, etc). Their nature was determined using several professional criteria classifying them as optical, physical or common origin pairs. Only 12 % were physical double stars. New systems were discovered.

Introduction

Very neglected and unconfirmed double stars were selected to design our observational programs. This sample of double stars have little astrophysical interest (only about 5-10 % are physical pairs), but the task to update their parameters and characterize them is important. Other objects studied were unconfirmed double stars discovered recently by the North American amateurs James Daley (DAL) and Dave Arnold (ARN) and the French amateur J.F. Courtot (CTT).

We present 548 individual relative measures for 113 double stars which were performed using different techniques. These observations are averaged into 246 mean positions and angular separation ranges from 2.6" (for the newly discovered FMR 4 AB) to 421.9" (for STF2417 AC). About 43% of the observed double stars were closer than 15". Thirty-five of them (31%) were discovered by John Herschel and they have remained unconfirmed since 1820-1850!

From January 2004 through December 2004, CCD cameras, micrometric eyepieces, on-line surveys such

as the Digitized Sky Survey (hereafter DSS) and SuperCosmos Sky Survey (Hambly et al. 2001a,b,c, hereafter SCSS), astrometric catalogs like Two Micron All Sky Survey (Cutri et al. 2000, hereafter 2MASS), and AC2000 (Urban et al. 1998) were used to perform the astrometric measures.

Forty-five double stars have been confirmed and of the programmed unconfirmed double stars, 7 of them could not be identified (see Table 1). A brief study of all measured doubles showed the suspected physical nature for 13 double stars and others 13 pairs were classified as common origin pairs.

In 2004 we discovered 15 new double stars. Ten of them are suspected to be binaries of common origin (that is, pairs of stars that be born together but do not orbit each other), others are physical binaries, gravitationally bounded. Francisco Rica discovered nine systems and Rafael Benavides discovered three systems. Several of these systems were discovered during a work carried out by Francisco Rica consisting of characterization of about 300 proper motion stars

recently discovered in 1999 by Wroblewski & Costa (1999).

We studied the nature of the programmed double stars. About 62% were optical pairs, that is, pairs with unrelated members. About 24% were physical pairs (whose members orbit each other) or common proper motion pairs.

One of the main goals for our group is the dessimination of our work and results to the professional and amateur double star community. In our last circular in 2004 we communicated our results to more than 10,000 amateurs and tens of professionals. Surprisingly to us, professional astronomers were more interested in our work than amateur astronomers. Well known professionals such as Dimistris Sinachopoulos, Brian Mason, Josefina Ling and others requested the last LIADA circular. Our last circular have traveled to different places in Europe, North America, Spanish America and even South Africa and Japan. Same well known amateurs have asked for our last circular, including Christian de Villiers (from South Africa), James Daley (from the U.S.A.), Andreas Alzner (from Germany) and the Spaniard Tofol

Confirmation of Visual Double Stars

The WDS catalog includes several thousand double stars that have only been measured at their discovery epoch and some hundreds of them have not been even resolved since 1900. These double stars are unconfirmed and they need a second measure.

In the period between January 2004 to December 2004, LIADA confirmed the existence of 45 visual double stars.

There are several reasons for this neglect: poor coordinates or large proper motion, erroneous magnitude or delta-m estimates or truly neglected (it is nearly impossible to measure the large amount of neglected double stars due to the few constant observers).

WDS No.	Designation	Mg.A	Mg.B	Epoch	ρ["]	θ[∘]
22446+1137	нј 300	11	12	1820	2	220
19314+1841	нј 890	10	12	1820	6	240
19331+3252	нј 1415	11	13	1828	4	16
19331+3252	нј 1415АС	11	14	1828	4	76
22051+4504	нј 1723	9	10	1828	15	185
22267+6011	нј 1769	10	11	1828	6	50
22077+0913	нј 3090	12	12	1830	4	82

Table 1: Unidentified, Unconfirmed Double Stars

Of all programmed unconfirmed double stars, seven were not identified. These pairs are shown in Table 1. In the first and second columns, the WDS identifier and discoverer code with their sequential number are listed; in the followed columns, from left to right, the magnitude for primary and secondary are listed; in column five the epoch of the single measure; and in the last two columns, the relative astrometry, ρ and θ .

Measurements

Relative Astrometry

The results of 548 individual relative measures, averaged into 246 mean positions, made with different techniques, are listed in Table 2. These observations range in separation from 2.6" to 421.9".

From January 2004 through December 2004, CCD cameras, micrometric eyepieces, DSS and 2MASS images were used to measure the relative astrometry of 113 binaries. Forty-five double stars have been confirmed.

Several observational techniques were used to obtain astrometry and photometry. A Microguide eyepiece was used by Rafael Benavides (Astronomical Society of Córdoba (Spain)) in a 9 inch telescope. 0.2-0.3 meters (8-12 inches) telescopes with a CCD were used by John Ryan – North-American amateur living in Salamanca (Spain)—and Jim Jones (from U.S.A.). Francisco Rica – Astronomical Society of Mérida (Spain) – used astrometric catalogs and online surveys.

The Lahuerta' brothers are members of the Grupo de Estudio, Observación y Divulgación de la Astronomía (G.E.O.D.A.) and they work from Manises' Observatory (MPC-IAU Code J98) in Valencia (Spain). They used a S/C Meade LX200 telescope with a 0.25 meters (10 inches) diameter objective and a 2,500 mm (98.4 inches) focal length. A Starlight Xpress MX516 CCD has a chip with 500 x 290 pixels and was used to obtain digital images. The size of the pixels is 9.8 x

12.60 µm. The Lahuertas' brothers worked with an f/6.3 focal reduce (with a JMI motofocus) resulting in a focal length of 1,478 mm (58.2 inches). The pixel size is 1.37 x 1.76 arcseconds and the field of view is 11.39 x 8.50 arcminutes. For astrometry and photometry they used Charon software and the GSC-ACT catalogue. Jim Jones from U.S.A. used a 0.28 meter (11 inches) telescope with a CCD SBIG ST7 with a KAF401E chip. Jim take 20 images for each pair which were reduced using Astrometrica and

UCAC-2 catalog.

Internet resources were also used for astrometry. The astrometric catalogs 2MASS and AC2000, enabled us to obtain measures of great accuracy. In the case of AC2000, the astrometry is very important because it allowed us to obtain early data from more than 100 years ago. DSS was also used for astrometry. Guide 6.0/7.0, Astrometrica and FitsView software were used for documentation and astrometry.

Table 2 lists relative astrometry for 113 double stars. In the first and second columns, the WDS identifier and discoverer code with their sequential numbers are listed; in the following columns, from left to right, the Besselian epoch of the astrometry; the number of measurements; the position angle and the angular separation; the V magnitude of the primary and secondary. If the magnitude listed has two decimal numbers these came from Tycho-2 (Hog et al. 2000) or else they came from calibrated GSC-I/GSC-II/USNO-B1.0 photometry or inferred by spectral distribution using JHK photometry. The spectral type and luminosity class were estimated using photometric and kinematics data.

Column 11 lists the observer code as follow: ARU (Alejandro Russo, amateur from Argentina); BVD (Rafael Benavides, Astronomical Society of Córdoba, Spain); JRY (John Ryan, amateur from Spain/U.S.A.); DOS (Daniel Osanai, amateur from Argentina); FMR (Francisco Rica, Astronomical Society of Mérida, Spain); JJO (Jim Jones, amateur from USA); MRI (Edgardo Masa [member of SYRMA-MED group] amateur from Valladolid, Spain), OMG (Lahuerta's brothers from Spain); . In total 7 observers contributed to this circular.

The observation methods are listed in the next column (CCD: CCD camera; MCG: MicroGuide eyepiece; 2MASS: 2MASS project images; DSS: Digitized Sky Survey, SCSS: Super Cosmos Sky survey; AC2000: Astrographics Catalogue 2000; MICROM: Micrometers). Figure 1 shows a bifilar micrometer used in this study.

In column (12) the nature of the double star code is as follow: PHY = Physical; OPT = Optical; CO = Common Origin; CPM: Common Proper Motion; "¿?" = unknown; "--" = nature not studied. A "?"character at the end means that the nature listed is the most probable. In the last column the confirmed double stars show a "C"; a number indicates the years since the last measure. A "#" character followed by a number refers to a note number.

Spectral Types and luminosity classes estimates.

Figure 1: Filar micrometer made by Edgardo Masa. This is one of the techniques used by members of the LIADA Double Star Section to obtain measures in 2004.

Columns (9) and (10) of Table 2 list, for both components, the spectral types and luminosity classes estimated by the LIADA group. When the luminosity class is unknown then the spectral type matches with the main sequence dwarf is listed. The process to estimate spectral types and luminosity classes using BVJHK photometry and kinematical data were explained in detail in Rica (2005).

Table 2 lists 150 spectral types estimated by LIADA group; of these, only 15 stars have spectral types published in the professional literature.

Table 3 lists components with spectral types and luminosity classes in the literature. LIADA spectral type estimates are also listed. In Table 2 there are many spectral types that were estimated using only JHK photometry due to the star component not being listed in Tycho-2, so their results are of lower accuracy than those obtained using BVJHK photometry.

Studying the Nature of Visual Double Stars

To study the nature of visual double stars and classify them as optical, physical, common proper motion or common origin pairs, BVJHK photometric and astrometric (proper motions and relative astrometry) data were used. The historical relative astrometry (θ corrected by precession and proper motions) in addition to our own measures are plotted in X (= ρ *cos (θ)) against Epoch and Y (= ρ *sin(θ)) against Epoch diagrams. A linear fit shows the relative proper motion of B with respect to A. These data are very important because nearly all the methods that allow us to

(Continued on page 91)

WDS Id.	Discover	Epoch	N	θ (°)	ρ(")	V _A	V _B	SP_{A}	SP_B	Obs.	Method	Туре	Notes
00003+5651	CTT 1	1983.776	1	92.3	47.03	8.56	11.35			FMR	DSS	OPT	#1
00515+5630	DAL 11	1954.752	1	231.2	40.76	8.11	12.7	G2V	MOV	BVD	DSS	CO/ PHY	С
		1993.623	1	231.5	40.69					BVD	DSS		
		1998.968	3	231.6	40.72					FMR	2MASS		
01572+2618	FMR 7BC	1997.842	1	354	85.80	10.77	20.2	G5V	мv	2MASS	2MASS	CO?	New
02053+2906	CTT 12 AC	1894.870	1	74.4	66.82	7.84	11.43	K1III	G7V	BVD	AC2000	OPT	C. #2
02361+5706	DAL 6	1997.772	3	128.5	8.57	12.35	13.12	F/G	KOIII:	FMR	2MASS	OPT?	C. #3
03528-0557	нј 2212	1955.884	1	296.9	27.39	9.58	13.3	A8V	G6V	BVD	DSS	OPT	C. 175. #4
		1982.709	1	294.5	28.65					BVD	DSS		
		1997.024	1	294.2	28.87					BVD	DSS		
04021-3429	BU1004AB-C	1912.739	1	137.5	55.87	6.73	11.8	G2V	K0V	BVD	AC2000	OPT	#5
		1996.852	1	163.9	42.26					DOS	DSS		
		1996.852	1	163.9	42.26					DOS	DSS		
04180-0700	нј 23	1892.448	1	274.3	45.14	11.6	12.1	F6V	G6V:	FMR	AC2000	OPT	C. 173
		1953.932	1	274.8	45.72					BVD	DSS		
		1989.894	1	275.4	46.20					BVD	DSS		
04289+3926	нј 3258	1953.025	1	252.8	14.76	11.75	12.6	F3V	G4V	BVD	DSS	OPT	C. 173. #6
		1993.730	1	253.1	14.89					BVD	DSS		
		1999.756	3	252.8	15.03					FMR	2MASS		
		2004.124	20	252.6	14.96					JJ0	CCD		
04524+7052	нј 1151АВ	1953.785	1	10.2	10.38	10.53	12.4	K2III	G6V	FMR	DSS	OPT	101
		1994.834	1	12.4	10.76					BVD	DSS		
		2004.090	4	13.6	10.60					JRY	CCD		
04524+7052	н J 1151AC	1953.785	1	331.2	20.22	10.53	13	K2III	K0V	FMR	DSS	OPT?	174
		1994.834	1	333.7	21.42					BVD	DSS		
		2004.090	4	334	21.18					JRY	CCD		
04550+3411	нј 351АВ	1955.861	1	86.6	15.29	9.72	12.1	K2V	F2V:	BVD	DSS	OPT	57. #7
		1995.897	1	79.1	17.26					BVD	DSS		
		2002.507	2	41.5	35.98					BVD	MCG		
		2004.090	4	78.5	18.13					JRY	CCD		
04550+3411	HJ 351AC	1955.861		27.4	22.23	9.72	18.4	K2V	K2:	BVD	DSS	OPT	C. 185. #7
		1995.897		28.1	24.60					BVD	DSS		
04550+3411	HJ 351AC	1955.861	1	27.4	22.23	9.72	18.4	K2V	K2:	BVD	DSS	OPT	C, 185, #7
		1995.897	1	28.1	24.60					BVD	DSS		

Table 2: Double star measurements made by LIADA in 2004.

WDS Id.	Discover	Epoch	N	θ (°)	ρ (")	V _A	V _B	SPA	SP_B	Obs.	Method	Туре	Notes
04550+3411	HJ 351AD	1955.861	1	64	31.68	9.72	13.7	K2V	G6V	BVD	DSS	OPT	C, 185, #7
		1995.897	1	61.5	34.10					BVD	DSS		
04550+3411	HJ 351AE	1955.861	1	240.7	66.23	9.72	12.9	K2V	G7V	BVD	DSS	OPT	C, 185, #7
		1995.897	1	240.7	64.11					BVD	DSS		
		2004.090	4	241.4	63.24					JRY	CCD		
04586+2918	нј 353	1954.995	1	242.5	14.22	11.84	12.6	G1III:	K5III	BVD	DSS	OPT?	C, 185
		1996.049	1	242.0	15.09					BVD	DSS		
		2004.090	4	241.3	14.92					JRY	CCD		
05012+0844	нј 5462	1954.083	1	300.2	12.81	11.42	12.7	K2III	F5III:	BVD	DSS	CO?	C, 182
		2004.090	4	300.7	12.88					JRY	CCD		
05225+2916	НЈ 362АВ	1896.150	1	160.5	13.69	9.46	11.07	F4V	F4V	BVD	AC2000	OPT?	
		1901.960	1	157.1	13.13					BVD	AC2000		
		1955.807	1	154.9	13.99					BVD	DSS		
		1955.809	1	157.3	13.73					BVD	DSS		
		1996.774	1	157.4	13.66					BVD	DSS		
		2004.090	4	155.7	13.88					BVD	MCG		
05225+2916	нј 362АС	1896.150	1	246.3	32.31	9.46	12.1	F4V	A4V	BVD	AC2000	OPT	
		1901.960	1	246.5	32.39					BVD	AC2000		
		1955.809	1	247.9	32.03					BVD	DSS		
		1996.774	1	248.7	32.05					BVD	DSS		
		2004.090	4	248.7	31.88					JRY	CCD		
05225+2916	HJ 362AD	1955.809	1	317.6	29.08	9.46	15.5	F4V	K4III:	BVD	DSS	٤?	C, 181
		1996.774	1	317.4	29.44					BVD	DSS		
05252-1119	HJ 5538AD	2004.090	4	85.5	54.67	8.6	12.55	A2V:	G4V	JRY	CCD	CO?	#8
05252-1119	STF 710AB	2004.090	4	195.6	10.78	8.6	8.9	A2V:	A1V:	JRY	CCD	PHY	#9
05289+3239	нј 366	1913.365	1	17.8	15.20	8.7	12	M6.5II I		BVD	AC2000	٤?	C, 185, #10
		1955.809	1	16.5	15.47					BVD	DSS		
		1993.809	1	17.0	15.78					BVD	DSS		
		2004.090	4	17.9	16.20					JRY	CCD		
05294+3230	BVD 7	1955.809	1	108.4	7.09	11.6	12	A2V:	A6V:	BVD	DSS	٤?	New, #11
		1993.809	1	108.0	6.91					BVD	DSS		
05316+3131	нј 703	1903.100	1	276.4	18.02	8.45	11.3	K3III	K5III	BVD	DSS	OPT	C, 185, #12
		1955.809	1	277.3	16.96					BVD	DSS		
		1996.774	1	279.6	16.34					BVD	DSS		
		2004.090	4	279.4	16.46					JRY	CCD		

 $Table\ 2\ continued\ on\ next\ page.$

WDS Id.	Discover	Epoch	N	θ (°)	ρ(")	V _A	V _B	SP_{A}	SP_B	Obs.	Method	Туре	Notes
05386+2002	DAL 8AC	1951.908	1	84.5	13.11	9.72	13.3	G1:V:	G5	BVD	DSS	٤?	C, #13
05402+0157	нј 2275	1951.911	1	314.4	24.19	11.22	12.4	GOV:	K5V:	BVD	DSS	CO?	C, 174
		1990.869	1	314.7	24.36					BVD	DSS		
		1999.774	3	314.7	24.24					FMR	2MASS		
		2004.090	4	314.7	24.08					JRY	CCD		
05439+5548	нј 2274	1998.985	3	303.2	7.42	11.7	14.5	G4	К2	FMR	2MASS	٤?	C, 174, #14
		2004.090	4	303.8	7.33					JRY	CCD		
05512+2817	нј 711	1955.812	1	350.8	13.81	10.33	12.1			BVD	DSS	OPT	105, #15
		1993.798	1	352.5	15.67					BVD	DSS		
		2004.090	4	353.7	16.12					JRY	CCD		
06581+1414	ARN 1AD	1903.633	1	285.8	85.35	7.3	10.26	B8V	F2V	AC2000	AC2000	CO/OPT	С
07154-0126	DAL 13	1897.100	1	338.3	36.49	10.43	10.48	F4V	F4V	BVD	AC2000	co	C, #16
		1955.894	1	338.4	36.47					BVD	DSS		
		1990.205	1	338.6	36.75					BVD	DSS		
07275+7302	DAL 12	1898.583	1	94.8	27.03	10.55	11.38	G0V	G8V	BVD	AC2000	co	С
		1953.113	1	94.8	26.76					BVD	DSS		
		1998.001	1	94.0	26.87					BVD	DSS		
11040+4321	YEU 1	1955.212	1	123.7	19.04	15.5	18	M0.5V	M2.5V	FMR	DSS	co	New
		1990.070	1	123.2	19.32					FMR	SCSS		
		1997.183	1	123.8	19.07					FMR	SCSS		
		1998.939	1	123.7	19.31					2MASS	2MASS		
11053-0623	LDS4056	1954.158	1	42.9	14.16	13.1	15.5	M2V	M3V	FMR	scss	PHY	45
		1984.056	1	41.8	14.33					FMR	SCSS		
		1985.056	1	42.9	14.07					FMR	SCSS		
		1996.199	1	42.1	14.06					FMR	SCSS		
		2001.042	1	43.0	14.22					2MASS	2MASS		
11368+2923	FMR 3AC	2000.097	3	208.7	194.52	11.59	10.93	G5V	G3V	FMR	2MASS	CO	New, #17
12028+2841	нј 514	1955.275	1	86.9	20.45	11.73	13.6	F5	G0	BVD	DSS	OPT?	C, 185, #18
		1996.212	1	87.6	20.88					BVD	DSS		
		2004.251	20	87.8	20.95					JJO	CCD		
		2004.456	4	87.8	21.04					JRY	CCD		
12079+0648	нј 2597	1957.321	1	151.4	41.40	10.98	13.3	G1V	G5V	BVD	DSS	OPT	#19
		1998.327	1	149.8	44.71					BVD	DSS		
		2004.456	4	149.7	45.30					JRY	CCD		

WDS Id.	Discover	Epoch	N	θ (°)	ρ (")	V _A	V _B	SPA	SP_B	Obs.	Method	Туре	Notes
13220+1028	НЈ 225АВ	1910.430	1	183.7	34.17	11.57	12.59	F8V:	G6V	BVD	AC2000	OPT	#20
		1921.400	1	183.5	34.26					BVD	AC2000		
		1955.370	1	181.4	35.41					BVD	DSS		
		1997.278	1	180.2	35.94					BVD	DSS		
		2004.459	3	180.3	35.90					JRY	CCD		
13220+1028	HJ 225AC	1955.370	1	55.4	80.62	11.57	13.83	F8V:	G9III:	BVD	DSS	OPT	#20
		1997.278	1	55.5	80.97					BVD	DSS		
		2004.459	3	55.4	81.03					JRY	CCD		
13220+1028	HJ 225AD	1955.369	1	16.1	42.66	11.57	15.4	F8V:	K3V	BVD	DSS	OPT	
13300-1430	нј 2654	1954.392	1	336.9	17.61	12.1	13.2	K5V	K4V	DOS	DSS	OPT	C, 174, #49
		1982.300	1	328.1	17.79					BVD	DSS		
		1983.355	1	328.4	16.91					DOS	DSS		
		1983.360	1	328.3	17.78					DOS	DSS		
		1988.303	1	326.2	17.63					DOS	DSS		
		1988.303	1	327.0	18.07					BVD	DSS		
		1993.403	1	325.2	18.17					DOS	DSS		
13351-0933	FMR 4	1999.147	1	305.0	2.60	15.4	15.6	M1.5V	M3V	2MASS	2MASS	CPM	New
13368-0139	НЈ 1235	1952.081	1	252.4	14.19	11.16	12.4	G4	K0	BVD	DSS	OPT?	C, 177, #21
		1996.230	1	252.7	16.42					BVD	DSS		
		2004.459	4	252.4	16.52					JRY	CCD		
13393-0436	BVD 6BC	1952.400	1	111.6	6.46	13.2	14.4	K6V	MOV	FMR	DSS	PHY?	New
		1999.290	3	112.8	6.46					FMR	2MASS		
13393-0436	нј 1236	1952.393	1	98.0	28.72	11.3	13.2	G6V	K6V	BVD	DSS	OPT	C, 177
		1983.347	1	97.1	30.09					BVD	DSS		
		1999.291	3	98.1	30.74					FMR	2MASS		
		2004.459	3	97.5	31.52					JRY	CCD		
13403+0726	нј 2668	1919.423	1	290.6	10.16	12.3	12.4	K5V	K7V	BVD	AC2000	CO	C, 175
		1950.300	1	290.0	9.92					BVD	DSS		
		1996.231	1	293.1	10.01					BVD	DSS		
		2000.229	3	294.4	9.93					FMR	2MASS		
		2004.459	4	294.1	10.15					JRY	CCD		
13419+1159	BVD 8BC	1954.247	1	75.6	2.76	13.8	14			BVD	DSS	٤?	New
		1993.316	1	69.9	2.99					BVD	DSS		
		1998.994	1	69.2	3.01					FMR	2MASS		

WDS Id.	Discover	Epoch	N	θ (°)	ρ (")	V _A	V _B	SPA	SPB	Obs.	Method	Туре	Notes
13419+1159	НЈ 229АВ	1954.247	1	34.8	16.48	11.9	13.2	K7III:		BVD	DSS	OPT	C, 185, #22
		1993.316	1	32.5	16.83					BVD	DSS		
13445+0732	HJ 1240	1919.420	1	288.8	10.53	11.33	13.2	G2III:	G4V:	BVD	AC2000	٤?	175
		1950.300	1	288.7	10.61					BVD	DSS		
		1996.231	1	289.0	10.34					BVD	DSS		
		2004.459	4	288.5	10.32					JRY	CCD		
13494+0524	нј 1242	1918.360	1	118.1	10.83	11	12.3	G1V	G5V	BVD	AC2000	PHY	C, 177, #23
		1950.300	1	118.4	10.74					BVD	DSS		
		1996.231	1	118.6	10.66					BVD	DSS		
		2004.462	4	118.3	10.77					JRY	CCD		
13549-1442	нј 2691	1956.349	1	108.7	13.29	11.8	14.4	F5V	G8V	BVD	DSS	OPT	C, 174
		1995.406	1	108.4	13.74					BVD	DSS		
		2004.462	4	108.4	13.84					JRY	CCD		
14214+1335	нј 235	1950.272	1	265.5	10.90	11.87	13.4	F1V	G6V	BVD	DSS	OPT	
		1994.338	1	260.9	11.25					BVD	DSS		
		2004.462	1	259.6	11.05					JRY	CCD		
14310+1344	НЈ 238АВ	1994.338	1	73.5	26.52	11.64	12.91	G3V	G9V	ARU	DSS	OPT	#24
		2004.315	7	72.9	26.88					JJO	CCD		
		2004.320	7	72.9	26.88					JJO	CCD		
		2004.462	4	72.9	26.90					JRY	CCD		
14310+1344	HJ 238AC	1994.338	1	92.3	52.20	11.64	12.09	G3V	F9V	ARU	DSS	OPT	#24
		2004.315	7	92.3	52.36					JJO	CCD		
		2004.320	7	92.3	52.31					JJO	CCD		
14426+1929	LDS 968AB-C	2000.187	3	309.6	135.09	9.11	10.11	K0V	K8V	MRI	2MASS	PHY/CO	#25
14443-1826	FMR 6	1954.183	1	177.4	16.64	14.1	18.3	K7V	M2.5V	FMR	DSS	co	New
		1976.414	1	178.0	16.47					FMR	DSS		
		1985.317	1	178.6	16.54					FMR	DSS		
		1994.194	1	178.5	16.32					FMR	DSS		
		1994.530	1	179.0	16.61					FMR	DSS		
15017-0707	GIC 123	1953.453	1	110.9	47.53	13.8	14.9	K7V	M2V	FMR	DSS	OPT	С
		1984.548	1	112.1	44.00					FMR	DSS		
		1991.264	1	111.8	43.43					FMR	DSS		
15092-0532	FMR 8	1999.190	3	236.3	5.25	13.3	13.9	M3V	M3V	FMR	2MASS	PHY?	New

WDS Id.	Discover	Epoch	N	θ (°)	ρ(")	V _A	V _B	SP_A	SP_B	Obs.	Method	Туре	Notes
15208-1749	FMR 11	1953.379	1	332.6	4.53	14.4	19.4	M2.5V	M5.5V	FMR	scss	PHY?	New
		1998.235	1	330.3	5.18					2MASS	2MASS		
15236-1504	FMR 12	1999.298	1	153.1	6.73	11.79	14.8	K9V	мзv	2MASS	2MASS	PHY?	New
15256-1513	WRO 1	1998.241	1	141.5	7.67	12.5		MOV		2MASS	2MASS	CPM	New
16044-1127	STF1999AB	1999.234	3	98.9	11.74					FMR	2MASS	PHY	#26
16044-1127	STF1999AC	1999.234	3	84.2	83.14					FMR	2MASS	OPT	
17010+3755	нј 262	1982.554	1	303.4	20.23	12.7	13.1	G4III:	G2III:	FMR	DSS	OPT?	C, 186
		2004.563	20	303.8	20.35					JJO	CCD		
		2004.721	3	303.6	20.44					OMG	CCD		
17291+1727	DAL 14	1899.510	1	183.9	14.93	8.75	11.6	A3V	G1V	BVD	AC2000	OPT	#26b
17299+2246	DAL 3AC	1997.455	1	262.7	63.16	12	13.1	K1III	G4V	2MASS	2MASS	OPT	#27
17391+0202	SHJ 251BC	2004.741	3	69.6	100.40	7.74	10.67			OMG	CCD	OPT	#28
18099+4824	STF2293	1902.813	1	83.8	12.40	8.03	10.26	F6V	G8V	BVD	AC2000	PHY	#99
18546+2754	DAL 5AC	2000.264	1	273.5	26.30	12.2	12.3	G0V	K1III	2MASS	2MASS	OPT	#29
18548+3306	DAL 10	1983.513	1	51.9	30.49	10.31	12.1	K2III	K5III	FMR	DSS	OPT	#30
18562+0412	STF2417AB	2004.627	2	104.0	22.34	4.62	4.98			MRI	MICROM	PHY	#31
18562+0412	STF2417AC	2004.627	2	58.0	421.94	4.62	6.71	A5V	F9V	MRI	MICROM	OPT	C, 52, #32
18562+0412	STF2417BC	2004.627	1	57.0	407.05	4.98	6.71	A6V	F9V	MRI	2MASS	OPT	#33
19020+1907	ARN 18AE	1982.476	1	339.3	174.97	6.94	7.8	K0III	F9V:	FMR	DSS	OPT	#35
19020+1907	HJ 2851AB	1999.844	1	159.1	13.91	6.94	12.1	K0III	K1III	2MASS	2MASS	OPT	#34
19020+1907	HJ 2851AC	1982.476	1	294.1	47.92	6.94	11.5	K0III	G6V:	FMR	DSS	OPT	
19020+1907	WAL 102AD	1999.844	1	134.9	47.03	6.94	12.6	K0III	K4III	2MASS	2MASS	OPT	C, 62, #36
19125+2812	нј 1375	2004.686	20	85.4	12.33	10.97	13	F7V	K3III:	JJO	CCD	OPT	C, 178, #37
		2004.721	3	86.8	12.64					OMG	CCD		
19290+0343	HJ 2872AC	2004.721	3	227.9	13.38	9.95	12.5	G9V	К6	OMG	CCD	٤?	C, 176, #38
19294+4052	нј 1405	1894.832	1	47.7	15.16	10.8	12.03	K2III:	G5V:	AC2000	AC2000	OPT	C, 178
		2004.721	3	40.0	16.76					OMG	CCD		
19303+3320	нј 1406АВ	2004.743	3	300.9	12.80	11.9	11.8	K2III	F7V	OMG	CCD	OPT	
19303+3320	HJ 1406AC	2004.743	3	208.2	12.18	11.9	12.8	K2III	G2V	OMG	CCD	OPT	
19308+2929	нј 1407	1898.779	1	287.9	11.64	10.26	12.3	F5V	A6V:	AC2000	AC2000	OPT	C, 178, #39
		2004.743	3	302.3	11.74					OMG	CCD		
19347+3152	нј 1416	1912.901	1	244.9	9.13	11	11.9	A6V:	K1III:	AC2000	AC2000	OPT	#40
		2004.743	3	235.0	10.06					OMG	CCD		
19373+3254	НЈ 1424	2004.743	3	30.7	15.12	11.8	11.92	F1V	G5V	OMG	CCD	OPT	C, 178, #41

WDS Id.	Discover	Epoch	N	θ (°)	ρ(")	V _A	V _B	SP_A	SP_B	Obs.	Method	Туре	Notes
19377+3255	FMR 10AC	1924.707	1	9.2	39.95	11.17	10.92	KOIII:	K4III	AC2000	AC2000	CO	New
		1998.326	1	9.1	40.00					2MASS	2MASS		
19377+3255	нј 1425АВ	1924.707	1	236.5	12.03	11.17	11.9	G3III:	G1III:	AC2000	AC2000	OPT	C, 178
		2004.473	3	240.5	12.11					OMG	CCD		
19414+3313	BKO 78AC	1988.453	1	197.9	7.47	10.23	14.9	G2III:	K1	ARU	DSS	٤?	
19414+3313	нј 1430АВ	1921.926	1	152.3	17.43	10.23	11.51	G2III:	A4V:	AC2000	AC2000	OPT	
		1988.453	1	153.8	17.14					ARU	DSS		
		2004.538	20	153.7	17.31					JJO	CCD		
		2004.566	20	153.9	17.28					JJO	CCD		
		2004.743	3	153.8	16.87					OMG	CCD		
19415+0255	нј 600	1999.591	1	165.2	22.06	10.92	11.37	K3III	F7	2MASS	2MASS	OPT	C, 186
		2004.743	3	164.5	21.31					OMG	CCD		
		2005.640	3	164.2	21.79					OMG	CCD		
19423+1937	нј 2891	2004.743	3	108.4	12.06	10.93	11.77			OMG	CCD	OPT	#42
20599+4016	SEI1363CR	1900.549	1	38.2	8.64	9.65	10.59	G6V	G8V	AC2000	AC2000	PHY	
22017+0233	нј 3080	1983.680	1	292.7	20.49	10.01	13.2	K2III	G8	FMR	DSS	OPT?	C, 176, #43
		2004.991	3	294.0	20.01					OMG	CCD		
22019+5506	нј 1718АВ	2004.991	3	219.8	9.25	11.13	11.97	A1V	F5V	OMG	CCD	OPT	#43
22019+5506	н J 1718 AC	1983.516	1	277.1	13.18	11.13	12.75	B7V	K III	FMR	DSS	OPT	#44
22019+5506	нј 1718вС	2004.991	3	296.9	13.19	11.97	12.75	F5V	K5:III	OMG	CCD	OPT	
22035+0652	нј 3084	2004.991	1	52.6	14.32	12.3	13.5	KOIII:	G1V	OMG	CCD	OPT	
		2004.991	3	52.6	14.32					OMG	CCD		
22053+4629	нј 1725	2004.991	3	78.2	29.09	10.68	11.13	A7	G0V	OMG	CCD	OPT	
22075+4152	нј 1731	1895.692	1	207.3	14.00	10.11	12.4	F9V	G6V	AC2000	AC2000	PHY?	
		1999.986	1	207.6	13.99					2MASS	2MASS		
		2004.991	3	207.5	15.25					OMG	CCD		
22127+1134	нј 3099	1909.747	1	57.0	11.69	11.7	13.35	K5III	G7	AC2000	AC2000	OPT	C. 176
		2004.991	3	57.9	11.46					OMG	CCD		
22157+3051	FMR 13	1999.751	1	216.1	3.71	14	14.1	KOV:	K2V:	2MASS	2MASS	٤?	New
22159+3051	нј 960	2004.991	3	79.3	7.95	13.1	13.9	G5	G0	OMG	CCD	٤?	
22183+0442	нј 3103	2005.026	3	111.3	14.67	12.9	13.3	К3	G5V	OMG	CCD	OPT?	C, 176
22217+5112	нј 1757	1998.854	1	315.0	8.49	9.6	11.8	A3V	M1III	2MASS	2MASS	OPT	C, 178, #45
22276+0736	нј 3117	2005.026	3	254.6	34.19	11.33	13.5	F7V	G8V	OMG	CCD	OPT	C, 176
22306+3706	нј 1774АВ	2005.026	3	52.7	16.39	10.39	13	K2III	G7V	OMG	CCD	OPT?	C, 178

WDS Id.	Discover	Epoch	N	θ (°)	ρ(")	V _A	V _B	SPA	SP_B	Obs.	Method	Туре	Notes
22306+3706	нј 1774АС	2005.026	3	322.9	29.09	10.39	13.6	K2III	G6V	OMG	CCD	OPT?	C, 178
22306+3706	нј 1774вС	1998.764	1	293.6	33.28	13	13.6	G7V	G6V	2MASS	2MASS	٤?	
22337+1230	нј 298АВ	2005.026	3	184.6	27.52	12.69	12.68	K5V	K4V	OMG	CCD	CPM?	#46
22337+1230	OMG 1AC	1997.720	1	91.6	10.54	12.68	12.3	K5V	G1V	2MASS	2MASS	OPT?	New
		2005.026	3	90.3	11.13					OMG	CCD		
22338+1206	нј 3121	2005.026	3	32.2	17.97	9.28	11.9	мзііі	G	OMG	CCD	OPT	#47
22401+0628	нј 3131	1983.844	1	199.8	15.11	11.38	12.7	к3	G8V	FMR	DSS	OPT?	#48
		2005.026	3	202.5	15.75					OMG	CCD		

Notes:

- 1. Discovered in 1997 by the French amateur J. F. Courtot (92° and 46.5"). Proper motion incompatible. Optical pair.
- 2. Discovered in 2002 by the french amateur J. F. Courtot. Proper motion incompatible. Optical pair. Primary is a K1III giant star according to the literature (catalog "New Periodic Variable" (Koen & Eyer 2002) in total agreement with LIADA's estimate. The radial velocity is -11.4±2.8 km/s.
- 3. Discovered in 2002 by the North-American amateur James Daley. Proper motion incompatible. Optical pair.
- 4. Primary is A1V+(G/K) [Michigan Catalog]
- 5. Proper motion incompatible. Optical pair. WDS lists measures of C with respect to A; this circular lists measures of AB with respect to C. The AB pair is a binary star with a high proper motion. They are G1/2V and G0 stars according to the literature. The AB pair was well studied by Nordstrom in the "Geneva-Copenhagen Survey of Solar Neighbourhood" catalog (Nordstrom et al. 2004).
- 6. A 13.3 magnitude star (spectral type estimated, F6V) located at 13.2" in direction 282° is not bounded to the primary star.
- 7. Primary is a KO star according to Henry Draper catalog.
- 8. Abt & Corbally (2000) studied this system in a work titled "UBV Photometry and Ages of Trapezium Systems". Abt concluded that they were unbounded components. In our study we obtained very similar photometric parallaxes and so maybe be a common origin system.
- 9. ADS 4017. Spectral types A0 and A0 (Michigan Catalogue). Lineal elements calculated: $\Delta x = -0.4$ mas/yr; $\Delta y = +1.0$ mas/yr; $\theta = 194.4^{\circ}$; $\rho = 10.96$ " (1991.545)
- 10. Primary is the variable star V401 Aur with spectral type M6.5III.
- 11. Spectral types estimated by LIADA were corrected by interstellar absorption.
- 12. Primary is a K0 star according to Henry Draper catalog with a radial velocity of -26.4 km/s.
- 13. Discovered by the amateur James Daley in 2002 (82° and 13.4").
- 14. In the NGC 2013 open cluster.
- 15. Hipparcos calculated a distance of 9 parsecs. It must be an error because the photometry and proper motion correspond to a main sequence star at a larger distance.
- 16. According to literature the components are F2 and G0 stars.
- 17. New common proper motion companion to HJ 2579 A. Spectral types G5 and G2 ("Catalogue of Stellar Spectral Classifications" [Skiff, 2003]).
- 18. A is an F6 star ("Bergedorfe Spektral-Durchmusterung der 115 Nordlichen Kapteyn Eichfelder 44-67" de 1947)
- 19. Due to the large proper motion of the primary we performed a search for new uncataloged compo-

- nents. We used the ALADIN tool to search the Tycho-2, UCAC-2 and USNO-B1.0 catalogs for common proper motion stars. We also used photographic plates. No new companions were found.
- 20. Abt & Corbally (2000) listed the AB, AC and AD pairs in his catalog "*UBV photometry and Ages of Trapezium Systems*". They concluded in the optical nature of these pairs.
- 21. The TASS2 catalog (Richmond et al., 2000) lists for primary magnitudes V = 11.10 and I = 10.36.
- 22. This double star is located 9 arcminutes southwest of the WDS position. The accurate coordinate is RA: 13h 41m 21s55 and DEC: +11° 55' 12.5".
- 23. This is a physical pair but $\Delta(V-Mv) = 0.7$: is the primary an unresolved pair?
- 24. The professional Abt studied this triple star in 1988 obtaining UBV photometry (the V magnitude listed in Table II came from the Abt's work). Abt listed this system in his table "UBV photometry and Ages of Trapezium Systems". Abt concluded that the three components were optical in nature, in agreement with our result.
- 25. Spectral types M0 and M0 (Luyten, 1979, NLTT catalog).
- 26. The author edited a detailed work but it has not been published.
- 27. It was discovered by the North-American amateur James Daley in 2003 (184° and 17.8", mg. 8.75 and 11.7).
- 28. The amateur James Daley added a new member for the BRT 2434 system in 2003 measuring 262° and 64.4".
- 29. Primary is a K0 III + F4 IV star. Secondary is a F0 star (Henry Draper catalog); parallax from Hipparcos 0.009±0.001 arcsec. (110 parsecs).
- 30. The amateur James Daley added a new companion to the system BRT 3335 AB in 2001 (273° and 26.7").
- 31. Primary is a K2 star (catalog PPM); The amateur James Daley informed about this new pair in 2002. (51° and 30.9"). Galactic latitude of +13° so the spectral types must be corrected by interstellar reddening.
- 32. ADS 11853; literature lists spectral types A5 and A5.
- 33. It was only measured by Karl W. Kamper in 1954 (58° and 426"). Literature lists spectral types A5V and G5. The photometric distance of LIADA was of 33 parsecs. Hipparcos obtained distances of 40 and 27 pc. The main component is a suspected RR Lyrae catalogued as NSV 11558. The magnitud ranges between 4.59 and 4.72. The three components of this system are members of the Hyades association.
- 34. Literature lists spectral types A5Vn and G5. LIADA searched for unknown companions to component C. No companion was found.
- 35. ADS 11957; A is a giant K0 III ("MK Classification Extension").
- 36. A is a giant KOIII ("MK Classification Extension"). The secondary is the binary STF2437 (15° and 0.5" in 1997) composed by two star of spectral types G2IV and F8IV (Stephenson. & Sanwal 1969). The Hipparcos parallax for the primary corresponds to a distance of 216 ± 41 pc (LIADA obtained a photometric distance of 194 pc) and for the secondary a distance of 82 ± 17 pc. The North-American Dave Arnold catalogued the component E in 2002 (340° and 173.8").
- 37. It was discovered by A. Wallenquist in 1944 (140° and 45").
- 38. There is a weak star (V=15.1; K=12.31) at 5.6 arcsec in direction 119 degrees. According to the study by LIADA this star is not bounded.
- 39. The primary is a KO star (Henry Draper Catalog) although the Michigan Catalog lists G5/6 spectral type.
- 40. Spectral types F5 and A0 ("The LF Survey" (McCuskey 1947).
- 41. "The LF Survey" (McCuskey1947) lists spectral type of A2 for the primary.
- 42. The secondary star is brigther than the primary.
- 43. A is a K star (Henry Draper catalog).
- 44. A is a K0 star (PPM catalog).

- 45. This pair is on the Milky Way. Spectral types are corrected by reddening; Abt & Corbally (2000) obtained for the primary: spectral type A1V, E(B-V) = 0.22 and V Mv = +9.6. Abt concluded that B component is a background star.
- 46. Located at 7 minutes of arc North from the WDS position.
- 47. A star of 12.30 magnitude (M2000 catalog, Rapaport et al. 2001) is located at 11.13" and 90.3 degrees (measured performed by Lahuerta' Brothers in 2005.026) relative to A component. According to our study this star is not a bound G1V star. We classified it as OMG 1.
- 48. In 1996 (31 degrees and 12.8"). This measure is not in agree with our measure. The spectral type of the primary is M3 ("Dearborn Catalogue of Faint Red Stars (Lee, Baldwin, & Hamlin 1947); M0 in PPM. Is a infrared source in 12-25-60-100 μm bands.
- 49. It was measured in 1989 (201 degrees and 14.8"; mg. 10.7 and 11.3)
- 50. A new high proper motion star located at α =13h 29m 47s72 y δ = -14° 25' 31.99" was detected in the field of this double star. According to the study performed by LIADA it is a M3V star at a distance of

Name#1	Name#2	MgV	Sp_Lit	Sp_LIADA	Differ.
HD 12728	CTT 12A	7.84	K1III	K1III	0
HD 175638	STF 2417A	4.62	A5V	A5V	0
HD 175639	STF 2417B	4.98	A5V	A6V	+1
HD 176973	HJ 2851A	6.94	K0III	K0III	0
GSC 3973-1501	HJ 1718A	11.13	A1V	B7V	-4

Table 3: Comparison of Spectral Types between LIADA and the Literature

WDS Identifier	Desig.	θ-ρ (epoch)	mag. A - B spT. A - B	E(a) (A.U.)	Period (yrs)	$\Delta \mu_{x}$ (mas*yr $^{-1}$)	Δμ _y (mas*yr ⁻
05252-1119	STF 710AB	195.6 - 10.78 (2004.090)	8.60 - 8.90 A0V - A0V	4,941	147,000	-0.4	+1.0
11053-0623	LDS4056	43.0 - 14.22 (2001.042)	13.1 - 15.5 M2V - M3V	1,087	42,000	-0.1	-1.5
13494+0524	НЈ 1242	118.3 - 10.77 (2004.462)	11.0 - 12.3 G1V - G5V	3,554	149,000	-0.7	0.0
18099+4824	STF2293	85 - 13.3 (2005)	8.03 - 10.26 F6V - G8V	1,484	38,000	+1.2	-1.6
185622+0412	STF2417AB	104.0 - 22.34 (2004.627)	4.62 - 4.98 A5V - A6V	1,084	17,500	-3.5	-0.6
20599+4016	SEI1363CR	43.6 - 9.93 (2004.634)	9.64 - 10.58 G6V - G8V	1,079	27,000	-3.2	+2.6
22075+4152	НЈ 1731	207.5 - 14.25 (2004.991)	10.11 - 12.4 F9V - G6V	4,000	180,000	-0.9	-0.3
17360+2100	STF2190AB	21 - 10.3 (2008)	6.13 - 9.48 A5V - F3V	2,005	43,000	-2.5	+0.2
	FMR 4AB	305 - 2.6 (1999.147)	15.4 - 15.6 M1.5V - M3V	372	8,400		
	FMR 8	236.3 - 5.25 (1999.190)	13.3 - 13.9 M3V - M3V	202	3,700		
	FMR 11	330.0 - 5.18 (1998.235)	14.4 - 19.4 M2.5V - M5.5V	370	10,000	-11.0	+11.0
	FMR 12	153.1 - 6.73 (1999.298)	11.79 - 14.8 K9V - M3V	433	10,100		

Table 4: Orbital Data of Physical Pairs

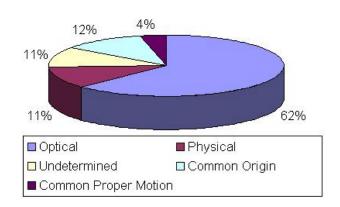
(Continued from page 80)

know their nature use them. If a double star is physical then these data will give us the projected relative orbital motion and velocity.

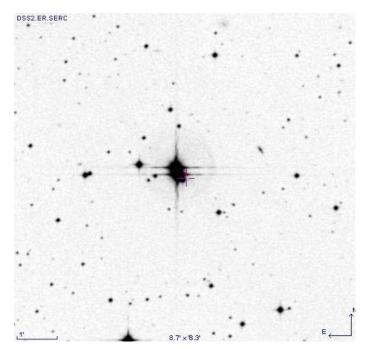
The Tycho-2 optical BV photometry and the 2MASS infrared JHK photometry in addition to the individual proper motions allow us to obtain the spectral type and luminosity class (see the last paragraph).

Finally the photometric and astrometric data are analyzed using up to 6 methods or criteria that allow us to classify visual double stars according to their nature.

Table 2 shows in column (12) the conclusion of this study. LIADA studied the nature of all 113 visual double stars measured. About 62% (71 visual double stars) were optical or suspected optical, while only 12% (13 doubles) were physical or suspected physical. Of the double stars studied, there were pairs with photometric and astrometric data consistent with pairs located at the same distance with the same kinematic but not gravitationally bounded: they are called 'common origin' and were 12% of all double stars studied. The common proper motion (CMP) pairs are composed by two stars with similar or very similar proper motion but with no nature suspected.


About 11% of visual double stars have an undetermined nature due to insufficient or no accurate data and more astrometric and photometric data are needed. These results are summarized in Figure 2 and are similar to those of the last year. As in previous surveys the very low percent of physical pairs did not surprise us because we previously know the low astrophysical interest of the very neglected and unconfirmed visual double stars where the most of them are bona-fide or candidate optical pairs.

Physical Pairs Orbital Data.


Table 4 shows same orbital data for the physical pairs studied in 2004 by LIADA. In the first and second columns, the WDS identifier and discoverer code with their sequential number are listed; in the following columns, from left to right, are listed ρ , θ and epoch for the last measure in LIADA database (if this column is in cursive came from WDS), magnitudes and spectral types for both components (determined by LIADA), expected semi major axe (in A.U.), crude period in years). The last two columns list the relative motion of the system (in mas/yr) in RA and DEC. A Digitized Sky Survey image of the first of these pairs (STF 710 AB) is shown in Figure 3.

The projected separation in A.U. is calculated

Nature of Visual Double Stars

Figure 2: Results of the nature of visual double stars. Most of the neglected and unconfirmed visual double stars are optical pairs with no astrophysical interest.

Figure 3: The binary STF 710 AB. Composed of white twin stars of 8.6 and 8.9 magnitudes, which seem to orbit about 147,000 years. Digitized Sky Survey photographic plate taken on January 21, 1985.

using the followed simple formula:

$$Projected_separation = \rho / \pi$$

where ρ is the angular separation and π is the mean parallax of the binary. LIADA considered the mean angular separation and the mean photometric parallaxes of the components. The photometric parallaxes were calculated using spectral types and luminosity class estimates and the absolute magnitude obtained from several professional references.

The expected semi-major axis, E(a), in arcseconds, was calculated using the work of Paul Couteau (1960) by the followed formula:

$$Log E(a) - Log (\rho) = 0.146$$

Where a and ρ are the semi-major axis and the angular separation. The orbital period was calculated using the followed formula derived from the Kepler Laws:

$$P = \sqrt{\frac{E(a)^3}{\sum M_{\Theta}}}$$

The values of relative proper motion are showed in the two last columns. Since all double star in Table IV are physical then relative proper motion give us the projected relative orbital velocity.

Acknowledgments

This report makes use of data from the Two Micron All Sky Survey (MASS), which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation.

The Guide Star Catalog-I was produced at the Space Telescope Science Institute under a U.S. Government grant. These data are based on photographic data obtained using the Oschin Schmidt Telescope on Palomar Mountain and the UK Schmidt Telescope. The Guide Star Catalogue-II is a joint project of the Space Telescope Science Institute and the Osservatorio Astronomico di Torino. Space Telescope Science Institute and is operated by the Association of Universities for Research in Astronomy, for the National Aeronautics and Space Administration under contract

NAS5-26555. The participation of the Osservatorio Astronomico di Torino is supported by the Italian Council for Research in Astronomy. Additional support is provided by European Southern Observatory, Space Telescope European Coordinating Facility,

the International GEMINI project and the European Space Agency Astrophysics Division.

The Digitized Sky Survey was produced at the Space Telescope Science Institute under U.S. Government grant NAG W-2166. The images of these surveys are based on photographic data obtained using the Oschin Schmidt Telescope on Palomar Mountain and the UK Schmidt Telescope. The plates were processed into the present compressed digital form with the permission of these institutions. This research is based on data from the SuperCOSMOS Sky Surveys (SSS) at the Wide-Filed Astronomy Unit of the Institute for Astronomy, University of Edinburg.

This publication has made use of the Washington Double Star Catalog, UCAC2 and USNO-B1.0 maintained at the U.S. Naval Observatory.

The data mining required for this work has been made possible with the use of the SIMBAD astronomical database and VIZIER astronomical catalogs service, both maintained and operated by the Center de Données Astronomiques de Strasbourg (http://cdsweb.u-strasbg.fr/)

References

Abt, H. A., Corbally, C. J. 2000, ApJ, 541, 841

Cutri, R.N. et al., 2000, Explanatory to the 2MASS Second Incremental Data Release, http://www.ipac.caltech.edu/2mass/releases/second/index.html

Hambly, N. C., MacGillivray, H. T., Read, M. A., et al. 2001a, MNRAS, 326, 1279

Hambly, N. C., Irwin, M. J., & MacGillivray, H. T. 2001b, MNRAS, 326, 1295

Hambly, N. C., Davenhall, A. C., Irwin, M. J., & MacGillivray, H. T. 2001c, MNRAS, 326, 1315

Hog, E. et al., 2000, AJ, 335, 27

Koen, C., Eyer, L. 2002, MNRAS, 331, 45

Lee, O. J., Baldwin, R. J., Hamlin, D. W. 1947, AnDea, 1, 5

McCuskey, S. W. 1947, ApJ, 106, 1

Nordstrom, B. et al. 2004, A&A, 418, 989

Rapaport, M. et al. 2001, A&A, 376, 325

Rica, F., 2005, JDSO, 1, 1

Richmond, M. W. et al. 2000, PASP, 112, 397

Skiff, A. B. 2003, VizieR On-line Data Catalog: III/233,

http://vizier.cfa.harvard.edu/viz-bin/VizieR?-source=III/233

Stephenson, C. B. & Sanwal, N. B. 1969, AJ, 74, 689
Urban, S. E., Corbin, T. E., Wycoff, G. L., Hoeg,
E., Fabricius, C., Makarov, V. V. 1998, AJ, 115,
1212

Wroblewski, H., Costa, E. 1999, A&AS, 139, 25

