Dave Arnold

Program Manager for Double Star Research 2728 North Fox Fun Drive, Flagstaff, AZ 86004

Email: dvdarnl@aol.com

Abstract: This report contains theta/rho measurements from 98 different double star systems. The time period spans from 2007.570 to 2007.748. Measurements were obtained using a 20-cm Schmidt-Cassegrain telescope and an illuminated reticle micrometer. This report represents a portion of the work that is currently being conducted in double star astronomy at Divinus Lux Observatory in Flagstaff, Arizona.

In my previous article, I made a reference to the work of Charles Lada in regards to the frequency of the occurrences of binary star systems. As a postscript to my eleventh report, I might also mention that as I have been working with the double star listings in the WDS catalog, I've noticed that a substantial number of these doubles appear to be optical in nature. This assessment is based upon the divergent proper motions of the various pairs that I have measured over the past several years. Because of the importance of trying to avoid filling the WDS catalog with even more such listings, it should probably become standard practice to submit only doubles, which display an apparent common proper motion, as new possible pairs. As is well known, while common proper motion is not a sufficient condition, it is a necessary condition in determining whether a given double star is also binary in nature.

Many of the existing optical double listings were submitted during the 19th and early 20th centuries when the proper motions of many of the stars were unknown. Hence, it would not be appropriate to be overly critical about the cataloging of these double stars in the past. However, with the resources that are now currently available, most of the obvious optical doubles can, and probably should be, identified as such and not be submitted as new double stars. For this reason, I have realized the necessity to become more meticulous with my own research in this regard.

As has been done in previous articles, the selected double star systems, which appear in this report, have been taken from the 2001.0 version of the Washington Double Star Catalog, with published measurements that are no more recent than ten years ago. Several systems are included from the 2006.5 version of the WDS catalog as well. There are also some noteworthy items that are discussed pertaining to the following table.

Consistent with previous reports, several double stars are being highlighted, in this article, for significant theta/rho shifts resulting from proper motion by one or both of the components. To begin with, a decrease of 3.5% in the rho value, for BU 680 AC, appears to have occurred since 1985. Proper motion by the "A" component is responsible for this. Secondly, proper motion by the reference point star, for HJ 951, has caused a 3.5% increase in the rho value since 1997. Thirdly, a combination of only one set of published measurements in 1925 and proper motion by both components, in regards to STF 2952 AC, has caused significant variances from current measurements. The rho value has decreased by almost 34" and the theta value has increased by about 14.5 degrees. The 1925 measurements may have been inaccurate because the proper motion vectors indicate that the theta value should be decreasing. Next, proper motion, mostly by the companion star, for SKF 16, is responsible for an increase of 8.5 degrees in the theta

value since 1981. Similarly, proper motion by the companion star has caused a rho value shift in regards to B 1918. An increase of 6.5% has been measured since the 1998 listing was published. Lastly, a large proper motion by the reference point star, for LDS 3346, has been responsible for a 4 degrees increase in the theta value and a 2.7% increase in the rho value, since 1998.

Regarding H 18 AD, it is apparent that a large proper motion by the "A" component has caused significant increases in the rho parameter since the first measurements were performed in 1781. However, the 1998 rho values in the 2001.0 and the 2006.5 versions of the WDS catalog differ by 4 seconds. Consequently, the rho value in the table shows a 4% increase over the value listed in the 2001.0 catalog, but the table value is 1.9% less than the rho value in the 2006.5 catalog. Since the rho value is increasing at a rate of approximately .06" per year, one or both of the catalog versions appear to be in error. The 1781 rho value could also be inaccurate. These components were measured several times because the rho value in the table is not in good agreement with the rho values in either of the catalogs, based upon the rate of a .06" increase per year. Perhaps additional measurements would help to bring more accuracy to this rho value.

Proper motions in opposite directions, by both components of two optical double stars, are responsible for noteworthy increases in the rho values for these systems. In regards to STF 85 AB, the rho value has increased by 2.4% since 1998. For H 12 AD, the rho value has increased by 3.5%, or 9.5 arc seconds, since 1923. In this second case, the passage of over 80 years, since the 1923 measurement was published, has contributed to this large increase in the rho value.

In contrast to the systems mentioned above, orbital motion appears to be the cause for an increase of 2.5 degrees in theta value, for STT 547 AB, since 1998. These components share a common proper motion

Because of the paucity of measurements that exist for LMP 23 AB-C, and those having been made over 35 years ago, the theta measurement appearing in the table departs significantly from the catalog value. Hence, a difference of 9 degrees is being reported from the last published measurement in 1970. While the proper motion vector for the "C" component suggests that the theta value should be increasing, the value in the table is less than the 1970 value. Additional measurements might help to establish accurate values for both the theta and rho parameters.

Two possible common proper motion pairs, which do not appear to have been previously cataloged, are also listed in the table. The first one, identified as ARN 98 (21578+5234), is located near the STT 456 multiple star system in Cygnus. The second, listed as ARN 99 (22843+4524), can be found near HJ 1815 in Lacerta.

Some errors, which have appeared in the WDS catalog, are also being noted. First of all, regarding BU 696 AD and AE, the theta/rho measurements have been listed between the wrong components. The "AD" measurements that are listed in the catalog are actually for "CD" and the "AE" values represent measurements for "AD." No "E" component exists for this quadruple star system. Also being noted is a quadrant flip, which appears to have occurred, for the 1998 theta measurements pertaining to ROE 59 AC. A value of 15 degrees would be needed, rather than 195 degrees, in order for the orientation of the theta value of the "AB" components to remain at 213 degrees. The theta value of the "AC" components is listed as 13 degrees for measurements published in 1902.

Next, two double stars have been identified that have coordinates that are slightly different from what are listed in the catalog. The first one, CHE 435, is located near 23067-0412 rather than the listed coordinates of 23072-0411. This matches the coordinates for HJ 978 and the theta/rho measurements for CHE 435 also closely match those for HJ978. Hence, CHE 435 appears to be a duplication of HJ 978 should probably be removed from the WDS catalog. The second double star that has a coordinate variance from the catalog listing is HJ 1808. The catalog coordinates are listed as 22454+4903, but this pair appears closer to the coordinates of 22464+4903. In this case, HJ 1808 is not a duplicate entry, but the coordinate variance might partially explain the reason for only one set of published measurements appearing in the catalog, with those being in 1901.

NAME	RA DEC	MAGS		PA	SEP	DATE	N	NOTES
STF2769	21105+2227	6.7 7	.4 30	0.9	18.27	2007.608	1n	1
SKF 16	21245+1003	10.0 10	.2 5	59.5	53.82	2007.608	1n	2
ES 35 AC	21406+5419	8.6 10	.7 2	9.1	21.23	2007.608	1n	3
ARN 98**	21578+5234	10.1 10	.5 26	54.9	35.55	2007.608	1n	4
нј 951	22014+3243	9.5 10	.5	50.5	12.84	2007.608	1n	5
STT 228 AB	22019+0446	8.0 9	.8 2	23.3	85.91	2007.608	1n	6
S 802 AB	22024-1658	7.1 7	.1 24	16.0	3.95	2007.608	1n	7
BU 696 AC	22045+1551	7.7 8	.9 32	22.1	63.20	2007.570	1n	8
BU 696 AD	22045+1551	7.7 9	.9	3.0	120.97	2007.570	1n	8
STF2887	22173-0042	9.8 9	.8 2	29.6	7.90	2007.570	1n	9
но 615 АВ	22213+2820	4.8 10	.7 12	28.7	71.10	2007.570	1n	10
STF2910	22282+2332	9.0 9	.6 33	32.3	5.43	2007.570	1n	11
STF2915	22326+0725	9.4 9	.5 12	26.5	14.81	2007.570	1n	12
нј 1808	22464+4903	10.5 10	.5 31	7.8	10.86	2007.608	1n	13
ARN 99**	22483+4524	8.4 10	.4 22	29.4	37.53	2007.608	1n	14
STF2945	22497+3119	9.0 9	.1 29	9.7	3.95	2007.570	1n	15
STF2952 AB	22542+2801	7.7 10	.4 13	88.3	17.28	2007.608	1n	16
STF2952 AC	22542+2801	7.7 10	.4 24	4.4	165.90	2007.608	1n	16
BU 847	22546+2020	9.0 10	.3	35.0	6.91	2007.570	1n	17
STT 485 AB	23027+5514	6.5 10	.1 4	8.1	18.76	2007.647	1n	18
STT 485 AC	23027+5514	6.5 10	.4	9.9	56.29	2007.647	1n	18
STT 242	23065+4655	7.8 8	.6	31.1	79.99	2007.647	1n	19
CHE 435	23072-0411	9.2 10	.7 28	88.9	14.81	2007.573	1n	20
STF2978	23075+3250	6.3 7	.4 14	13.8	8.39	2007.647	1n	21
LMP 23 AB-C	23096+0045	10.1 10	.5	39.8	238.98	2007.647	1n	22
S 825 AB	23100+3651	7.6 8	.1 31	9.9	66.66	2007.647	1n	23
STF2988	23120-1156	7.8 7	.8	0.8	3.46	2007.647	1n	24
STT 494	23208+2158	8.2 8	.7 8	32.0	3.46	2007.647	1n	25
STF 3007 AC	23228+2034	6.7 10	.7 30	06.3	99.74	2007.647	1n	26
LDS 816 A-BC	23328-1651	8.6 10	.6 35	52.3	338.71	2007.573	1n	27
STF 3028	23386+3502	7.1 10	.0 20	0.3	14.81	2007.573	1n	28
нј 991 АВ	23417+2226	10.4 10	.7 34	12.3	16.79	2007.573	1n	29
н 24	23460-1841	5.6 6	.4 13	35.8	6.91	2007.647	1n	30

Table continued on next page.

NAME	RA DEC	М	AGS	PA	SEP	DATE	N	NOTES
STF3040	23481+1009	9.5	9.7	217.8	4.44	2007.573	1n	31
STT 252	23549+2929	6.8	8.2	145.2	110.60	2007.647	1n	32
STI1248	00004+6026	10.3	10.7	48.4	12.34	2007.630	1n	33
STT 254 AB	00013+6021	7.0	8.3	89.4	57.77	2007.707	1n	34
STT 254 Aa	00013+6021	7.0	9.4	324.4	155.04	2007.707	1n	34
STT 254 Bb	00013+6021	8.3	10.3	129.6	133.31	2007.707	1n	34
TOB 9	00040+4942	9.0	9.8	25.9	43.94	2007.630	1n	35
STT 547 AB	00057+4549	8.8	9.0	184.5	5.93	2007.685	1n	36
STT 547 AF	00057+4549	8.8	10.0	253.8	327.85	2007.685	1n	36
STF 1	00089+3713	8.9	10.7	285.9	9.88	2007.685	1n	37
ES 928	00093+5324	9.9	10.6	17.9	8.39	2007.630	1n	38
нј 1944	00132-1711	7.5	9.0	335.1	66.16	2007.630	1n	39
ROE 59 AC	00138+4648	10.4	10.7	15.2	104.68	2007.630	1n	40
нј 1959	00226+2140	9.0	10.7	285.9	27.16	2007.630	1n	41
STT 11	00307+3208	7.5	7.7	318.5	197.50	2007.685	1n	42
STT 13 AB	00318+3658	8.2	10.6	131.8	6.42	2007.630	1n	43
STT 13 AD	00318+3658	8.2	10.6	174.3	42.46	2007.630	1n	43
H 18 AD	00405+5632	2.2	8.8	281.8	68.14	2007.685	1n	44
LDS3195 AB	00446-1856	10.7	10.2*	242.0	146.64	2007.630	1n	45
ES 446	00458+4951	8.6	10.7	256.6	13.83	2007.630	1n	46
BU 232 AB-C	00504+5038	8.4	9.9	298.6	24.69	2007.630	1n	47
STF 85 AB	01044-0518	8.6	10.5	157.9	36.04	2007.707	1n	48
STF 88 AB	01057+2128	5.3	5.5	159.3	29.63	2007.707	1n	49
STF 90 AB	01058+0455	6.4	7.2	84.3	33.08	2007.707	1n	50
STF 91	01072-0144	7.4	8.6	316.0	4.44	2007.707	1n	51
BU 236	01121+4700	9.1	9.2	113.9	5.43	2007.633	1n	52
SKI 1	01121-1338	9.1	10.0	250.8	8.39	2007.707	1n	53
STF 97	01122+5132	8.7	9.1	102.1	4.44	2007.633	1n	54
STF 111	01180-0420	9.4	10.5	329.1	20.74	2007.633	1n	55
нј 2039 АВ-С	01220-0927	9.1	10.6	244.1	51.35	2007.633	1n	56
STT 16	01227+1712	7.2	10.1	137.1	71.10	2007.633	1n	57
GAL 307 A-BC	01230-1258	7.8	10.4	313.0	40.49	2007.633	1n	58
ES 759	01348+5209	10.5	10.7	91.0	10.37	2007.707	1n	59

Table continued on next page.

NAME	RA DEC	MAGS	PA	SEP	DATE	N	NOTES
STT 20 AB	01376+2233	7.8 8.8	315.7	88.88	2007.633	1n	60
GAL 312	01434-1127	9.1 10.7	326.8	43.45	2007.633	1n	61
STF 162 Aa-D	01493+4754	6.5 9.9	96.0	138.74	2007.633	1n	62
STF 179	01532+3719	7.5 8.1	160.0	3.46	2007.685	1n	63
GAL 315	01572-1015	6.4 10.6	133.8	29.63	2007.707	1n	64
н 12 АВ	01579+2336	4.8 6.6	47.2	37.53	2007.707	1n	65
Н 12 AD	01579+2336	4.8 9.8	84.7	270.58	2007.707	1n	65
S 409 AB	01581+4123	7.6 9.6	83.2	28.64	2007.685	1n	66
BAL 9	02003-0138	9.8 10.3	336.3	5.93	2007.652	1n	67
LDS3346	02076-0037	6.9 10.5	342.1	81.47	2007.748	1n	68
STF 215	02091+4048	9.0 10.3	60.2	19.75	2007.748	1n	69
STF 227	02124+3018	5.2 6.6	69.0	3.95	2007.748	1n	70
ES 1306	02234+4441	10.3 10.5	275.1	9.38	2007.652	1n	71
В 1918	02244-1810	8.8 9.8	116.9	5.43	2007.726	1n	72
нј 1240	02258-1038	8.0 10.3	265.2	10.86	2007.652	1n	73
нј 2137	02283+4314	9.1 10.6	132.7	27.65	2007.652	1n	74
MLB1061 AC	02324+3905	10.0 10.7	311.3	24.69	2007.652	1n	75
AG 303 AB	02340+4409	10.2 10.7	292.4	15.80	2007.652	1n	76
AG 42	02343+4017	9.0 9.5	143.8	6.42	2007.748	1n	77
BAL 279	02425-0119	10.0 10.2	41.4	5.93	2007.668	1n	78
STF 300	02446+2928	7.9 8.0	314.5	3.46	2007.748	1n	79
STF 307 AB	02507+5554	3.7 8.5	302.2	28.64	2007.748	1n	80
ROE 67 AB	02517+3854	8.9 10.6	129.8	26.66	2007.652	1n	81
GAL 79	02535-1151	10.5 10.7	354.4	5.93	2007.652	1n	82
STF 330	02572-0034	7.2 9.0	192.4	8.89	2007.652	1n	83
A 208 AC	02584-0135	8.9 10.7	279.2	133.81	2007.652	1n	84
AG 305	03063+5100	10.2 10.3	100.4	11.36	2007.726	1n	85
ALI 514	03113+3805	10.7 10.7	209.8	11.85	2007.726	1n	86
ES 1310 AD	03131+4440	10.4 9.0*	234.8	98.26	2007.726	1n	87
STF 372 AB	03193+4559	10.1 10.5	291.6	7.90	2007.726	1n	88
нј 3246 АС	03207+1736	9.9 9.9	138.3	172.81	2007.726	1n	89
STF 378	03245+5826	9.5 10.6	314.2	18.76	2007.726	1n	90
STF 384 AC	03285+5954	7.9 10.6	341.9	116.53	2007.726	1n	91

Table continued on next page.

NAME	RA DEC	MAGS	PA	SEP	DATE	N	NOTES
KR 20	03309+5558	9.9 10.3	297.7	7.41	2007.726	1n	92
BU 532 AC	03332-1003	8.6 7.3*	310.9	79.99	2007.726	1n	93
STF 417	03335-0233	8.7 10.6	180.3	25.68	2007.726	1n	94
SMA 37 AB	03339+4351	9.5 10.7	287.8	31.60	2007.726	1n	95
ROE 76 AC	03340+4048	9.1 10.5	156.1	87.39	2007.726	1n	96
нј 3583	03377-2028	10.2 10.5	86.8	11.85	2007.726	1n	97
нј 2201	03412-0517	8.3 10.7	41.7	38.51	2007.726	1n	98

^{*} Companion star is the brighter component.

Notes

- 1. In Vulpecula. Relatively fixed. Spect. A1V, A4V.
- 2. In Equuleus. Sep. decreasing; p.a. increasing. Spect. K3.
- 3. In Cygnus. Sep. increasing. Spect. M8, A.
- 4. In Cygnus. Possible common proper motion. Near STT 456 system.
- 5. In Pegasus. Sep. increasing; p.a. decreasing. Spect. F5.
- 6. In Pegasus. Sep. increasing; p.a. decreasing. Spect. G5, G0.
- 7. In Aquarius. Sep. dec.; p.a. inc. Common proper motion. Spect. A2V, A2V.
- 8. In Pegasus. AC = Sep. & p.a. inc. AD = p.a. inc. Spect. AC = GOV, KO.
- 9. In Aquarius. Common proper motion; p.a. increasing. Spect. K0.
- 10. 32 Pegasi. Slight increase in position angle. Spect. B9III.
- 11. In Pegasus. Common proper motion; p.a. decreasing. Spect. KOIV, KOIV.
- 12. In Pegasus. Sep increasing; p.a. decreasing. Spect. F0, F0.
- 13. In Lacerta. Sep. & p.a. increasing.
- 14. In Lacerta. Possible common proper motion. Near HJ 1815. Spect. B8, A0.
- 15. In Pegasus. Position angle increasing. Spect. F0, F0.
- 16. In Pegasus. AB = c.p.m.; p.a. inc. AC = sep. dec. Spect. AB = F8V, F8V.
- 17. In Pegasus. Common proper motion; p.a. decreasing. Spect. G5.
- 18. In Cassiopeia. AB = sep. & p.a. dec. AC = sep. inc. Spect. B9III.
- 19. In Andromeda. Relatively fixed. Spect. B3, B9.
- 20. In Aquarius. Relatively fixed. Common proper motion. Spect. F2.
- 21. In Pegasus. Common proper motion; p.a. decreasing. Spect. A3V, A3.
- 22. In Pisces. Position angle decreasing. Spect. G2.
- 23. In Andromeda. Relatively fixed. Spect. K2, K2.
- 24. In Aquarius. Common proper motion; p.a. decreasing. Spect. G8III, G8III.

^{**} Not listed in the WDS CATALOG.

- 25. In Pegasus. Relatively fixed. Spect. F0, F0.
- 26. In Pegasus. Sep. increasing; p.a. decreasing. Spect. G2V.
- 27. In Aquarius. Relatively fixed. Common proper motion. Spect. K5.
- 28. In Andromeda. Sep. & p.a. decreasing; common proper motion. Spect. A2, A2.
- 29. In Pegasus. Position angle decreasing.
- 30. 107 Aquarii. Common proper motion; sep. inc.; p.a. dec. Spect. F2V, F2V.
- 31. In Pegasus. Relatively fixed. Common proper motion. Spect. F5, F5.
- 32. In Pegasus. Slight increase in position angle. Spect. B9, K0.
- 33. In Cassiopeia. Sep. decreasing; p.a. increasing. Spect. K0, K.
- 34. In Cassiopeia. AB, Aa, & Bb = sep. slightly dec. Spect. A, B, a = N1, B5, G5
- 35. In Cassiopeia. Position angle decreasing. Spect. F0, A2.
- 36. In Andromeda. A, B, & F = cpm. AB = p.a. increasing. Spect. K6, M0, M2.
- 37. In Andromeda. Relatively fixed. Spect. A5.
- 38. In Cassiopeia. Relatively fixed. Common proper motion.
- 39. In Cetus. Separation increasing; p.a. decreasing. Spect. K0, G0.
- 40. In Andromeda. Position angle slightly increasing.
- 41. In Andromeda. Sep. increasing; common proper motion. Spect. K2, G5.
- 42. In Andromeda. Relatively fixed. Common proper motion. Spect. F2, F5.
- 43. In Andromeda. AB & AD = sep. inc.; p.a. dec. Spect. AB = G0, G0.
- 44. Alpha or 18 Cassiopeiae. Sep. & p.a. increasing. Spect. KOIII, KO.
- 45. In Cetus. Sep. & p.a. increasing. Spect. M2.
- 46. In Cassiopeia. Separation increasing. Spect. K5.
- 47. In Cassiopeia. Sep. decreasing; p.a. increasing. Spect. F5, G.
- 48. In Cetus. Separation increasing. Spect. G0.
- 49. Psi or 74 Piscium. Common proper motion; p.a. dec. Spect. B9.5V, A0V.
- 50. 77 Piscium. Relatively fixed. Common proper motion. Spect. F3V, F5V.
- 51. In Cetus. Sep. increasing; p.a. decreasing. Spect. F9V, F5.
- 52. In Andromeda. Separation increasing. Spect. A0.
- 53. In Cetus. Common proper motion. Sep. & p.a. slightly dec. Spect. F0, A8V.
- 54. In Cassiopeia. Relatively fixed. Common proper motion. Spect. A0, A0.
- 55. In Cetus. Relatively fixed. Common proper motion. Spect. F7.
- 56. In Cetus. Sep. & p.a. increasing. Spect. F0.
- 57. In Pisces. Separation increasing. Spect. F5V, F2.
- 58. In Cetus. Relatively fixed. Common proper motion. Spect. KOIV.
- 59. In Perseus. Relatively fixed. Spect. G5.
- 60. In Pisces. Sep. decreasing; p.a. increasing. Spect. F6V, F5.
- 61. In Cetus. Sep. increasing; p.a. decreasing. Spect. G0, G0.
- 62. In Perseus. Separation increasing. Spect. A2, F8.

- 63. In Andromeda. Relatively fixed. Common proper motion. Spect. F2V, F5.
- 64. In Cetus. Position angle slightly increasing. Spect. G5IV.
- 65. In Aries. AB = relfix; cpm. AD = sep.inc. Spect. F0IV, F7V, K0.
- 66. In Andromeda. Sep. & p.a. increasing. Spect. G5, G5.
- 67. In Cetus. Common proper motion; p.a. slightly increasing. Spect. F8, F8.
- 68. In Cetus. Sep. & p.a. increasing. Spect. G2V, K.
- 69. In Andromeda. Sep. & p.a. slightly increasing. Spect. F2V.
- 70. 6 Trianguli. Common proper motion; p.a. decreasing. Spect. GOIII, F5V.
- 71. In Andromeda. Position angle slightly decreasing.
- 72. In Cetus. Sep. & p.a. increasing. Spect. G0, G5.
- 73. In Cetus. Sep. & p.a. increasing. Spect. F5.
- 74. In Andromeda. Sep. increasing; p.a. decreasing. Spect. F0.
- 75. In Andromeda. Sep. increasing; p.a. decreasing. Spect. G3V.
- 76. In Andromeda. Relatively fixed. Common proper motion. Spect. K3III, A2.
- 77. In Andromeda. Sep. increasing. p.a. decreasing. Spect. A2.
- 78. In Cetus. Common proper motion; p.a. increasing. Spect. G0, G0.
- 79. In Aries. Common proper motion; sep. & p.a. increasing. Spect. FOIV, FO.
- 80. Eta or 15 Persei. Sep. & p.a. slightly increasing. Spect. M3I, A0.
- 81. In Perseus. Sep. increasing; p.a. decreasing. Spect. F8.
- 82. In Eridanus. Common proper motion; p.a. decreasing.
- 83. In Cetus. Relatively fixed. Common proper motion. Spect. G8III, G8III.
- 84. In Eridanus. Sep. & p.a. decreasing. Spect. F0.
- 85. In Perseus. Relatively fixed. Common proper motion. Spect. F2, F2.
- 86. In Perseus. Relatively fixed. Common proper motion.
- 87. In Perseus. Sep. increasing; p.a. decreasing. Spect. K0.
- 88. In Perseus. Relatively fixed. Common proper motion. Spect. A9V, F0.
- 89. In Aries. Separation decreasing.
- 90. In Camelopardus. Relatively fixed. Common proper motion. Spect. B8, A.
- 91. In Camelopardus. Position angle increasing. Spect. F8.
- 92. In Camelopardus. Relatively fixed. Spect. A2.
- 93. In Eridanus. Relatively fixed. Common proper motion. Spect. F2, A3.
- 94. In Eridanus. Relatively fixed. Common proper motion. Spect. KO.
- 95. In Perseus. Relatively fixed. Common proper motion. Spect. A0.
- 96. In Perseus. Sep. & p.a. increasing. Spect. F5, F5.
- 97. In Eridanus. Relatively fixed. Common proper motion. Spect. F5.
- 98. In Eridanus. Sep. decreasing; p.a. increasing. Spect. F8.