Neglected Double Observations for 2006 No. 3: 17th and 18th Hour Doubles

E. O. Wiley

Remote Astronomical Society Observatory, Mayhill, New Mexico (MPC H06) Mailing Address: 2503 Atchison Ave., Lawrence, KS 66047

Email: edwiley@sunflower.com

Abstract: I report the observational results for 72 neglected doubles (including 30 confirmations), six new pairs, and 25 additional doubles found between 17.0hr and 18.59 hr RA and +0° and +40° DEC. New pairs are reported result from resolving components of existing systems or named to avoid confusion in crowded fields. Observations were made with the AREO2 robotic telescope located at the Remote Astronomical Society Observatory, Mayhill, NM, USA (http://www.remote-astronomical-society.org/). Nineteen measures of 16 pairs are reported from catalog positions. In addition to theta and rho values (and standard deviations), I report catalog numbers of pairs, some of which lack precise positional information.

In this paper, I report a total of 103 mean and standard deviation measures of theta (PA) and rho-(Sep) values of double stars imaged using a Takahashi Mewlon 300 Dall-Kirkham cassegrainian reflector located at the Remote Astronomical Society Observatory in Mayhill, New Mexico. The instrument, with a focal reducer, works at F9.1, with an approximate focal length of 2730mm. It is equipped with a nonantiblooming ST8E CCD camera (9 micron pixels) and the combination has an approximate resolution of 0.6 arcseconds/pixel with a field of view of 11.5 x 17.3 arcminutes. The OTA is mounted on a Bisque Paramount 1100 GEM. In addition, 21 single measures of 16 additional pairs and their J and K magnitudes are reported from positions and magnitudes given in the 2MASS of A2002.2 catalogues.

Methods

Methods largely follow Wiley (2006a). Observing lists were requested from the USNO (Mason, 2006). Following a procedure recommended by Dr. William I. Hartkopf (USNO), my catalog queries have been modified to maximize catalog information. A query is submitted to the Aladin interactive sky atlas (Bonnarel et al., 2000) at the CDS, Strasburg, for the

coordinates listed in the Washington Double Star Catalogue (Mason et al., 2006). As the plate is being downloaded, I then select the "Surveys" option in the Sever Selection window and download information from a number of catalogs, minimally UCAC2.0 (Zacharias et al., 2004), GSC2.3 (STScI, 2006), Tycho-2 (Høg et al., 2000), 2MASS (Skrutskie et al., 2006), and AC2000.2 (Urban, 1998). Each is downloaded as a separate file so that each can be queried individually. For doubles with no precise coordinates, proper motions, or delta magnitudes, selected catalog information is copied and pasted into an Excel file and the information is forwarded to the USNO for their use. In addition, 2MASS J, H, and K magnitudes are harvested, delta magnitudes computed and forwarded to USNO for pairs that lack delta-magnitude measures. The UCAC, GSC catalog numbers or 2MASS unique identifiers and magnitudes are recorded, as appropriate. A search of the field is then undertaken using Guide8.0 (Project Pluto. 2006) to determine if other resolvable WDS pairs are in the same field. If so, their catalogue information is also collected. The image is then printed and annotated for use as a finder chart.

Exposures are carried out with a clear filter and

the initial image was checked by downloading a JPEG of the FITS image to insure that the correct field was imaged. Exposures ranged from 12 to 40 seconds, depending on magnitude. If the exposure looked acceptable, then a minimum of three additional images are made. If not, then exposure times are adjusted and rechecked. MPO Canopus (Warner, 2006) is used to reduce the images. It produces either an automatic or manual astrometric solution to the image based on the UCAC 2.0 catalog (Zacharias et al., 2004). The pair is measured using a convenient double star harvesting subroutine built into MPO Canopus. Canopus then computes the average and standard deviation for each pair. A final check is made using the information downloaded from CDS in concert with the WDS catalog entries to insure that I am minimizing errors of identification.

Components of each pair are identified by catalog number in the tables to insure that future investigators can check my results. In the past, I have attempted to report the UCAC2.0 catalog number, where possible. However, in this paper I report

GSC2.3 and 2-MASS catalog numbers and associated magnitudes (V and J respectively) in order to report differences in magnitude for each pair.

Some of the pairs on my schedule for this study proved either too close to measure or acceptable images were not obtained owing to seeing. Additional measures were obtained using 2MASS positions and are reported with the Epoch of observation and the 2MASS J(ir) and K(ir) magnitudes for each member of the pair. In a few cases, inspection of the images obtained and/or the survey plates examined showed that primaries or secondaries were actually more than one star. These, and a limited number of other new pairs, are recognized using recommendations for naming in Hartkopf and Mason (2004).

Results

Measures of neglected doubles, including a number of confirmations are presented in Table 1. Measures of more recently measured doubles are presented in Table 2. Table 3 contains measures taken from various catalogs.

(Continued on page 116)

WDS/Disc	Primary	Secondary	Mags	DM	PA	PAsd	SEP	SEPsd	Epoch	N	Notes
17010+3755 НЈ 262	N5YB000576	N5YB000575	12.84 13.11	0.270	123.9	0.15	20.38	0.08	2006.518	4	1
17046+3900 HJ 2804 AB	2M245875982	2M245875981	9.628 10.314	0.686	244.3	0.31	6.43	0.15	2006.518	3	2
17046+3900 HJ 2804 AC	N5YN000114	N5YN000120	11.0 12.96	1.960	173.9	0.06	83.62	0.09	2006.518	3	1
17048+0142 BAL1484	N3A7000070	N3A7025668	11.99 12.99	1.000	138.4	0.65	5.34	0.04	2006.518	4	1
17072+0647 LDS 988	N3AI010541	N3AI010542	9.66 9.77	0.110	216.3	0.08	18.25	0.04	2006.518	4	1
17075+3557 BU 1455 AC	N3DF000450	N3DF003829	10.55 12.68	2.130	221.8	0.06	12.04	0.03	2006.518	4	1
17076+0332B AL2434	N39X000610	N39X000609	12.72 13.13	0.410	317.7	0.06	15.31	0.04	2006.614	4	1
17162+2401P OU3275	N3HD000101	N3HD000100	12.89 13.49	0.600	264.9	0.15	8.83	0.04	2006.614	4	1,3

Table. 1. Measures of 73 neglected doubles not measured in the past 50+ years bounded by 17.0 hr to 18.59 hr RA and +0° to +40 ° DEC. Primary and Secondary catalogue numbers or either, GSC2.3 ("N") or the 2MASS unique identifier (2M). Magnitudes follow catalogue magnitudes, with GSC2.3 V-magnitudes and 2MASS magnitudes in J(ir), unless noted. Stars that do not appear in UCAC2.0, GSC2.3, USNOB1.0 or Tycho catalogues are listed as "uncat" and WDS magnitudes are listed for these. Differences in magnitude are computed from catalogue magnitudes. Abbreviations: WDS/Disc., Washington Double Star Catalogue 2000 position, discoverer and number; Primary, secondary, Mags are catalogue numbers and catalogue magnitudes for primary and secondary respectively; DM is magnitude difference; PA, is theta in degrees, PAsd is the standard deviation of theta for N measures; SEP is rho in seconds of arc, SEPsd is the standard deviation of rho for N measures; Epoch is the date of observation; N is the number of images measured. Measures were taken from images obtained from a 300mm Cassegrainian reflector, F9.1, CCD camera, and a clear filter and measured using MPO Canopus.

WDS/Disc	Primary	Secondary	Mags	DM	PA	PAsd	SEP	SEPsd	Epoch	N	Notes
17165+0413 LDS 989	N3BT000262	N3BT000257	12.39 12.80	0.410	318.6	0.08	20.33	0.06	2006.614	4	1
17172+2421 POU3279	N3HD000010	N3HD000012	13.45 13.79	0.340	169.4	0.13	13.20	0.03	2006.614	4	1
17189+0427 BAL2886	2M1136971550	2M1136971554	10.385 11.036	0.651	158.8	0.32	6.94	0.02	2006.614	4	2
17331+0243 BAL1939	2м1139772395	2M1139772402	8.571 10.330	1.759	0.6	0.09	16.62	0.11	2006.614	5	2
17398+2444 POU3306	2M1053450858	2M1053450857	10.679 12.415	1.737	96.4	0.79	4.24	0.27	2006.614	4	2
17478+2536 HJ 1304	2M982365223	3м982365220	9.742 10.955	1.213	228.9	0.17	7.26	0.05	2006.614	4	2
17493+3745 MLB 753	N3DX000414	N3DX000413	12.70 14.44	1.740	352.2	0.23	10.05	0.04	2006.614	4	1
17504+0433 BAL2902AC	2M1129846789	2M1129846786	10.238 10.657	0.419	47.7	0.29	21.14	0.11	2006.614	4	2
17504+0433 BAL2902BC	2M1129846786	2M1129846774	10.657 11.236	0.579	47.4	0.44	18.65	0.26	2006.614	4	2
17525+1530 FOX 209AC?	N392000712	N392000713	11.90 12.50	0.600	121.9	0.02	38.21	0.04	2006.614	4	1
17550+2330 POU3324	N3GJ000953	N3GJ000956	13.39 14.13	0.740	152.1	0.19	12.22	0.03	2006.614	4	4
17567+1539 J 2098AC	2M1115533752	2M1115533757	10.667 11.944	1.277	307.5	0.09	20.96	0.20	2006.614	4	2
17579+3741 ROE 4	N4DZ000479	N3DZ000473	10.96 12.61	1.650	355.6	0.08	16.89	0.03	2006.682	5	"1,3"
17586+2417 POU3331	2M587404575	2M587404585	10.417 12.020	1.603	213	0.41	8.27	0.07	2006.614	4	2
17589+2303 POU3332	2M1043087882	2M1043087888	11.525 12.277	0.752	161.1	0.55	6.99	0.02	2006.614	4	2
18053+0504 BAL3013	2M871236679	2M871236684	8.818 9.778	0.960	73.4	0.32	5.16	0.47	2006.644	4	2
18066+0452 BAL2913	N1MF000214	N1MF000210	12.59 12.76	0.170	14.1	0.07	12.31	0.11	2006.644	4	1
18073+2334 POU3349AB	2M267459050	2M267459041	10.547 12.209	1.662	218.6	1.27	9.23	0.02	2006.682	3	2
18073+2334 WLY 8AC	2M267459050	2M267459046	10.547 11.797	1.250	133.3	NA	3.80	NA	2006.682	2	2
18083+0230 BAL1953	N1L8001056	N1L8001060	11.83 13.08	1.250	121.7	0.25	17.16	0.04	2006.682	4	1
18080+0222 WLY 9	2M505526250	2M505526253	9.637 8.670	0.967	94.2	0.11	16.40	0.05	2006.68	4	2
18088+1015 ROE 98AC	2M507649144	2M507649140	10.493 11.679	1.186	261.2	0.39	30.29	0.13	2006.682	4	2
18088+2450 POU3352?	2M1032379662	2М1032379661	11.584 11.860	0.276	300	NA	2.10	NA	2006.682	1	2

WDS/Disc	Primary	Secondary	Mags	DM	PA	PAsd	SEP	SEPsd	Epoch	N	Notes
18163+2016 HO 269	2M586932248	2M586932255	9.272 11.691	2.419	152.5	0.39	8.61	0.07	2006.682	4	2
18166+2327 POU3376	N212000207	N212000209	11.72 12.95	1.070	248	0.14	17.29	0.08	2006.707	6	1,3
18169+2718 MIL 4	N22M000763	N22M000766	10.90 12.87	1.970	129.8	0.10	16.63	0.02	2006.707	4	1
18182+0557 HJ 2830	N1M0000569	N1M0000570	10.97 12.47	1.500	93.3	0.18	11.26	0.02	2006.707	4	1
18190+2330 POU3383	N213000382	N213002605	13.29 13.73	0.440	253.5	0.35	7.70	0.07	2006.707	4	1
18212+2326 POU3391	N210000405	N210000402	13.13 13.87	0.740	325.5	0.64	10.69	0.04	2006.707	4	1
18227+2323 POU3395	2M1038271165	2M1038271158	11.962 12.497	0.805	184.5	0.79	7.00	0.13	2006.707	4	1
18230+2742 HJ 1322	N22B000293	N22B000295	10.51 11.94	1.430	239.3	0.06	21.57	0.03	2006.707	4	1
18257+2503 POU3409	N22H000470	N22H000471	12.86 12.76	0.100	247.6	0.28	12.18	0.05	2006.707	4	1
18305+0852 BRT2608AB	2M877257044	2М877257049	9.412 11.447	2.035	40.1	0.97	4.48	0.224	2006.72	4	2
18305+0852 WLY 10AC	2M877257044	2m 877257046	9.412 9.433	0.021	79.3	0.23	12.28	0.03	2006.72	4	2
18329+1529 J 2100	2M323082742	2M323082749	11.291 12.034	0.743	356.6	0.66	6.69	0.37	2006.72	3	2
18342+0341 ABT9001	N1RH000015	N1RH000012	10.24 12.34	2.100	339.8	0.24	20.35	0.09	2006.72	4	1
18348+2509 POU3433AB	N21R000369	N21R000366	11.91 14.16	2.250	344.5	0.36	9.91	0.10	2006.707	5	1
18348+2509 POU3434AC	N21R000369	N21R000367	11.91 13.97	2.060	69.3	0.16	14.55	0.05	2006.707	5	1
18355+0927 J 2136AC	2М1058866875	2M1058866875	8.929 11.757	2.828	263.3	0.36	11.31	0.18	2006.707	4	2
18357+2403 POU3436	2M1033310697	2M1033310706	12.073 12.568	0.495	166.8	0.50	4.86	0.19	2006.734	4	2
18368+2320 POU3438	N292000217	N292000213	13.37 13.43	0.060	358.2	0.18	8.56	0.02	2006.734	4	1
18392+2341 POU3454	N21L000354	N21L000353	12.59 13.02	0.000	274.6	0.09	13.17	0.03	2006.734	4	1,3
18394+3430 SEI 568	N253000204	N253022558	11.63 12.12	0.490	191.8	0.15	10.52	0.06	2006.734	4	1
18395+2415 POU3455	N21P000043	N21P015523	12.17 14.97	2.800	84.9	0.41	13.31	0.05	2006.734	5	1
18407+1749 ROE 88AB	N29E031144	N29E000675	12.94 12.50	0.440	129.5	0.32	8.17	0.17	2006.737	4	1
18407+1749 ROE 88AC	N29E031144	N29E000673	12.94 13.14	0.200	329.9	0.05	35.67	0.13	2006.737	4	1

WDS/Disc	Primary	Secondary	Mags	DM	PA	PAsd	SEP	SEPsd	Epoch	N	Notes
18407+1749 WLY 11AD	N29E031144	N29E031145	12.94 14.24	1.300	322.1	0.37	14.74	0.085	2006.737	4	1
18409+2447 POU3477	N21E000411	N21E044028	12.39 14.03	1.640	146.8	0.73	13.96	0.17	2006.737	4	1
18414+2350 POU3481	N21E000127	N21E009723	12.82 13.61	0.790	8.9	0.49	6.70	0.16	2006.737	4	4
18448+2431 POU3524	N0221103447	40549120	12.97 13.44	0.470	345.6	0.27	14.04	0.06	2006.737	4	1
18449+2433 WLY 12	40549138	40549142	13.01 13.08	0.070	320.2	0.40	17.05	0.15	2006.737	4	1
18451+2323 POU3525	N28X000283	N28X000284	12.1 13.56	1.460	233.3	0.50	10.17	0.21	2006.737	4	1
18452+2318 WLY 13	N28X033519	N28X033520	14.31 15.19	0.880	263.4	0.58	11.13	0.19	2006.737	4	1
18457+2337 POU3535	N28X053038	N28X053256	13.75 14.43	0.680	42.7	NA	16.70	NA	2006.737	1	1
18467+2325 POU3546	N28Z058947	N28Z058968	13.62 14.27	0.650	48.9	0.74	11.82	0.21	2006.737	3	1
18497+2337 POU3561	N28W044940	N28W000104	13.43 13.78	0.350	357.6	0.14	16.57	0.02	2006.775	4	1
18518+2428 POU3571	N24G000682	N24G011052	12.75 14.12	1.370	192.8	0.27	8.15	0.06	2006.775	4	4
18527+3301 BAR 46AC	N259000321	N259000323	12.27 11.39	0.880	250.8	0.13	41.13	0.11	2006.775	4	1
18546+2409 POU3584?	N23K000272	N23K015020	13.67 14.27	0.600	287.1	0.35	7.85	0.06	2006.775	4	4
18546+3656 ELS 7AB	Uncat.	N2DV059038	11.0 11.3	NA	338.7	0.37	8.61	0.11	2006.775	4	1
18546+3656 ELS 7AC	Uncat.	Uncat	11.0 13.5	NA	119.1	1.35	10.17	0.32	2006.775	3	
18549+2433 POU3588	N23K000802	N23K000803	13.56 14.18	0.620	115.2	0.34	8.37	0.07	2006.775	4	1
18553+2443 POU3593	2M105382180 0	2M105382182 3	6.742 11.868	5.126	194.3	0.52	10.11	0.05	2006.775	4	2
18555+0816 J 1191	N1NH000189	N1NH022289	13.28 13.33	0.050	38.2	0.29	8.33	0.07	2006.775	4	4
18560+2422 POU3599	N23K000941	N23K000005	13.05 13.65	0.600	213.7	0.40	13.47	0.07	2006.775	4	1,3

WDS/Disc	Primary	Secondary	Mags	DM	PA	PAsd	SEP	SEPsd	Epoch	N	Notes
18561+2350 POU3598	N260000105	N260000103	12.48 12.68	0.200	52	0.25	15.66	0.07	2006.775	4	1
18565+1555 J 1278AC	N2BU000381	N2BU000382	11.93 13.06	1.130	106.5	0.08	25.67	0.06	2006.775	4	1,5
18566+2417 POU3601	N23K000096	N23K024051	14.15 14.57	0.420	236.5	1.07	7.12	0.18	2006.775	7	4
18568+2421 POU3604	N23K000036	N23K027751	10.26 11.32	1.060	60.6	0.09	11.23	0.09	2006.775	7	1
18568+2456 POU3605	N23N000357	N23N000360	13.62 13.58	0.050	118	0.32	11.19	0.15	2006.775	4	1

Table 1 Notes

WDS/Disc	Primary	Secondary	Mags	DM	PA	PAsd	Dist	Dsd	Epoch	N	Notes
17014+3754 HJ 263	N5YB000590	N5YB000592	10.56 12.50	1.94	114.3	0.19	18.68	0.021	2006.51	4	1
17025+2023 BRT2427	2M1064287492	2M1064287480	11.081 11.641	0.56	19.5	0.24	9.3	0.051	2006.51	4	2
17046+3900 HJ 2804AD	N5YN000114	N5YN000119	11.0 12.68	1.68	138.4	0.08	93.59	0.226	2006.51 8	3	1
17170+2421 POU3277	2M 701522621	2M1115595835	10.708 11.745	1.037	167.6	0.3	6.44	0.181	2006.61 4	4	2
17420+2349 POU3310?	2M745911774	2M745911764	11.618 13.630	2.012	183.3	0.15	19.68	0.074	2006.61	4	2,3
17496+3756 ES 2567	2M257932662	2M257932665	12.264 12.649	0.385	193.5	0.85	5.28	0.102	2006.61 4	4	2
17504+0433 BAL2902AB	3M1129846789	2M1129846786	10.238 10.657	0.419	52	1.27	2.52	0.217	2006.61	3	2

Table 2. Measures of 25 recently measured doubles appearing on the same plates as those doubles reported in Table 1 bounded by 17.0 hr to 18.59 hr RA and +0° to +40° DEC. Primary and Secondary catalogue numbers or either UCAC2.0 (number alone), GSC2.2 (prefix "N"), or 2MASS (prefix 2m). Magnitudes follow catalogue magnitudes, with GSC2.2 magnitudes in F photometric band (red), except as noted. Stars that do not appear in UCAC2.0, GSC2.3, Tyco 2 or 2MASS catalogues are listed as "uncat" and WDS magnitudes are listed for these. Abbreviations: PA, is theta in degrees, PAsd is the standard deviations of N measures; SEP is separation in seconds of arc, SEPsd is the standard deviation of N measures; Epoch is the date of observation; N is the number of images measured. Measures were taken from images obtained from a 300mm Cassegrainian reflector, F9.1, CCD camera, and a clear filter using MPO Canopus.

¹ GSC2.3 V magnitudes.

²2 Mass J magnitudes.

³ PA reversed from WDS based on magnitudes.

⁴ GSC2.3 B magnitudes.

⁵A is probably composite magnitude of A+B.

WDS/Disc	Primary	Secondary	Mags	DM	PA	PAsd	Dist	Dsd	Epoch	N	Notes
17525+1530 L 17AB	N392000712	uncat	11.90	NA	288.3	0.39	2.19	0.019	2006.614	4	
17567+1539 Ј 2098АВ	2M1115533752	2M1115533747	10.667 11.053	0.386	132	1.23	3.64	0.157	2006.614	4	2
17574+3540 STF2257AB	N3DT000695	N3DT000699	7.69 11.29	3.6	152.3	0.08	22.73	0.048	2006.614	4	2
17574+3540 WAL 86AC	N3DT000695	N3DT000698	7.69 11.12	3.43	260.5	0.1	121.74	0.224	2006.614	4	1,4
18088+1015 ROE 98AB	2M507649144	2M507649145	10.493 10.766	0.273	271.3	0.46	4.14	0.173	2006.682	4	2
18270+2832 MLB 648	2M 693726042	2M 693726048	10.613 12.391	1.778	21.1	0.38	10.14	0.056	2006.72	4	2
18272+3847 MLB 854	2M1313120237	2M1313120244	10.760 11.113	0.353	8.1	0.51	5.96	0.216	2006.707	4	2
18355+0927 J 2136AB	2M1058866875	uncat	8.929	NA	310.5	2.04	2.39	0.004	2006.707	2	
18387+2422 POU3452	N21P000008	N21P000004	11.19 12.31	1.12	318.9	0.17	16.14	0.016	2006.72	2	1,3
18410+2445 POU3478	N21E000419	N21E000420	13.49 14.80	1.31	115.5	0.43	9.77	0.093	2006.737	4	1
18453+2321 POU3530	N28X000298	N28X036692	13.23 14.55	1.32	301.4	0.25	11.39	0.224	2006.737	4	1
18464+3116 HJ 1345	N261000472	N261000474	12.19 12.57	0.38	168.9	0.35	11.7	0.028	2006.737	4	1
18547+2409 POU3586	2M1115594300	2M1115594304	8.664 12.490	3.826	78.9	0.26	9.99	0.068	2006.775	4	2,3
18550+2430 POU3589	2M1115595837	3M1115595835	11.475 12.194	0.719	149.6	1.31	3.72	0.082	2006.775	4	2
18551+2430 POU3590	2M1053823027	2M1053823037	10.565 12.662	2.097	332.7	0.59	7.93	0.04	2006.775	4	2,3
18570+2413 POU3606	N23K000157	N23K000162	12.19 12.30	0.21	150	0.06	12.37	0.025	2006.775	4	1
18570+2413 POU3608	N23K000160	N23K000155	12.76 13.07	0.31	151.9	0.22	15.23	0.049	2006.775	4	1,3
18571+2456 HDS2686	2м637922223	2М637922224	8.657 10.159	1.502	273.1	0.16	8.05	0.075	2006.775	4	2

Table 2 Notes

- 1 GSC2.3 V magnitudes.
- 2 2 MASS J-magnitudes.
- 3 PA reversed based on magnitudes.
- 4 Magnitude is composite of HO 73AB.

Component	Primary	Secondary	PA	SEP	Epoch	Jmag	Kmag	Notes
17159+2413 POU3272	701495931	701495926	216.5	6.94	1999.426	9.144 11.833	8.568 11.389	
17572+3541 но 73АВ	Тус 260-437-1	Тус 2620-437-2	215.9	1.74	1991.550	11.795 12.258	11.118 11.438	1
17572+3541 STF2256AC	215293420	215293428	341.6	8.74	1998.290	9.335 11.933	8.959 11.608	
18073+2334 POU3349AB	267459050	267459041	217.4	9.3	1998.368	10.547 12.209	9.606 11.961	
18073+2334 WLY 8AC	267459050	267459046	132.3	4.38	1998.368	10.547 11.797	9.606 11.092	
18088+2450 POU3352?	1032379662	1032379661	291.6	3.63	2000.2109	11.584 12.741	11.266 11.522	
18089+3254 ES 184	382888187	382888182	159.9	4.88	1998.2914	9.186 10.279	8.998 10.193	
18119+2927 BRT 34	AC1005615	AC1005616	146.7	3.93	1906.466	12.82 13.03		2
18119+2927 BRT 34	1029161403	1029161399	163.5	5.42	2000.2299	10.917 10.584	10.279 9.864	
18152+2350 POU3369	586877941	586877946	132.4	4.59	1999.2388	12.397 12.286	12.016 11.887	
18155+1156 ROE 144	190629031	190629025	290.8	6.39	1998.1931	8.553 11.966	7.332 10.975	
18164+1832 LDS1009	586938557	586938561	250.3	27.15	1999.2388	10.063 10.32	9.696 9.922	
18305+0852 BRT2608AB	877257044	877257049	40.4	4.76	2000.2133	9.412 11.447	9.081 11.093	
18305+0852 WLY 10AC	AC371165	AC371170	72.1	14.58	1907.132	11.35 12.05		2
18305+0852 WLY 10AC	877257044	877257046	78.3	12.49	2000.2133	9.421 9.433	9.081 8.751	
18411+2447 LDS6330	1030393291	1030393278	6.2	5.20	2000.2573	7.528 8.86	6.616 7.774	
18527+3301 BAR 46AC	219744845	219744830	251.0	42.49	1998.3052	11.652 10.198	11.325 9.803	
18555+0816 J 1191	AC282663	AC282660	30.4	4.46	1919.631	12.53 12.81		2
18555+0816 J 1191	606409422	606409395	38.6	8.25	1999.5802	10.781 11.349	10.273 11.339	

Table 3. Measures of neglected doubles taken from catalogue positions. Catalogue entries are from three sources, 2Mass, Tycho 2 (Tyc) and AC200.2 (AC). Magnitudes are 2Mass J and K magnitudes, except as noted. PA is theta (in degrees), Sep is separation (in seconds).

Table 3 Notes

- 1 Tycho2 BT and VT magnitudes.
- 2 Blue magnitude, AC2002.2 catalogue numbers assigned by USNO.

(Continued from page 109)

Discussion of Selected Measured Pairs

A number of systems lie in crowded, star-rich, fields and at least two of the systems measured are probably synonymous with other WDS entries. These and other comments are presented below, in order of their WDS catalog entries.

17072+0647LDS 988 (Table 1) is probably 17087+4945STF 2123 in spite of the great difference in magnitude reported for LDS 988. The 1936 theta closely matches the reciprocal 1830 and 2004 angles and the rho is a close match to both. Both have similar proper motions. No candidate pair with LDS988 magnitudes reported in the WDS matches the measures in the field examined.

17525+1530FOX 209AC?. Fox 209AC (Table 1) is entered in the WDS in the same position as L 17, a recently measured double (reported in Table 2). If the measure reported herein is, in fact, Fox 209AC (problematic), then the original measure was incorrectly entered or transcribed as the angle is completely off (by some 60°). The AC2000.2 catalog positions indicate no significant movement of the components.

17574+3540 and 17572+3541 complex (Tables 2, 3): STF 2257; STF 2256; HO 73AB; WAL 46; POP 10. Various components of this complex have been named by F. Struve, Wallenquist, Hough, and Popovic. Observations of STF2257AB and WAL 86AC are reported in Table 2. HO73 was too close for me to measure, but catalog measures are reported in Table 3. (As noted in the WDS, HO 73 AB is synonymous with POP 10AB.) HO 73AB is a high proper motion pair whose position can be interpreted as close to the position of WAL 86C in 1944. If this interpretation is correct, then WAL 86C is a composite of HO 73AB. If so, then WAL 86CD as well as POP 10AC (already in synonymy, WDS Notes) can be synonymized with 17572+3541STF2256AC. The problem is that this hypothesis required that the original measures of WAL 86CD both be reversed and inaccurate as the 1944 theta (as reversed) and rho are some 14° and 2" off the 1949 STF 2256AC measure. Failing this, nothing else seems to match WAL 86CD in the field. Thus, it is either dubious or in synonymy and is tagged as "uncertain" in the WDS records (Brian Mason, pers. comm.).

18073+2334POU3349AB and 18073+2334WLY 8AC. The A component of POU2239 is resolved as two stars. To avoid confusion, I propose 18073+2334WLY

8AC, for which both observational (Table 1) and catalog (Table 3) measures are provided. The 1905 measure of POU 3349 is reversed given magnitudes. The 1954 measure corresponds to the middle of the two stars (POU3349B and WLY 8C) from a measurement taken from the POSSII plate. I have taken the northern of the two stars as POU3349A based on 2MASS J magnitudes (2MASS unique identifier 267459046). POU3349B does not appear in the UCAC2.0 catalog and only a single composite(?) measure appears in the USNO B1.0 catalog, so proper motions are unavailable. In addition there is a fourth star lying at about PA=274°, SEP= 8".

18083+0230BAL1953 and 18080+0222WLY (Table 1). BAL1953 is pair in a crowded field. The 1909 positions from the AC2000.2 catalog yields almost an exact match to the original measure. Unreported in the WDS is a pair almost directly west consisting of UCAC2.0 32576195 and 32576299. Casual inspection of the proper motions indicates that the pair is optical, but designation as WLY 9 seems appropriate to avoid confusion. Magnitudes appear inverted, but this is due probably due to the magnitude of the B component being overestimated due to another star on the plate (relationships to B is unknown). I thank Dr. William I. Hartkopf (USNO) for his confirmation this identification. WLY 9 probably would have been reported as a pair if both components had been included in the catalogs summarized by AC2002.2

18305+0852BRT2608AB and 18305+0852WLY 10AC (Tables 1, 3). BRT2608AB is in a crowded field. The observed measures (Table 1) agree closely with catalog measures taken from UCAC2.0 positions (Table 3). The AC2002.2 catalog positions agree with the measure of 1919 for 18305+0852BRT2608AB, indicating that this is a pair. However, the WDS 2005 measure does not match anything in the immediate field. The star UCAC2.0 34882726 (79.3°, 12.28" from the A component) is not a good match for the 2005 measure. I have designated 18305+0852WLY 10AC to prevent future confusion.

18357+2403 POU3436 (Table 1) lies in a crowded field. The measure reported herein matches fairly well in magnitude and closely with 1904 measure. It does not match with the 1951 measure. No possible pair in the vicinity can be identified with the 1951 measures reported in the WDS from the plates examined or my images.

18407+1749ROE 88 and WLY 11AD. This is a complex system. Proper motions of ROE 88B and

WLY 11D are fairly similar, but the error in RA associated with UCAC2.0 38110707 exceeds the measure.

18411+2447LDS6330 (Table 3) is listed as "identification uncertain" in the WDS. The pair reported is a reasonable candidate. Unfortunately, there are no proper motion values associated with either star to see if the discrepancy between the original measure and the 2MASS measure could be rectified.

18448+2431POU3524 and WLY 12 (Table 1) are in a crowded field. POU3524 might be confused with the optical pair herein designated WLY 12.

18451+2323POU3525 and WLY 13 (Table 1). POU3525 is another pair in a crowded field, with POU 3530 (Table 2) in the same field. The measures reported are a fair match to the original 1905 measure, but differ from the 1951 measure. One possibility is that the 1951 measure is of another pair. The most likely candidate, closely matching the 1951 measure in theta and rho and delta magnitude (but not actual magnitude) is designated WLY 13.

18497+2337POU3561. This is a crowded field, but I am fairly confident that the pair reported is POU3561.

18527+3301BAR 46. (Tables 1 and 3) gives measures for BAR46AB that agree with the 1990 measures in the WDS. The C component appears slightly elongate in the POSSII blue plate I consulted, but not elongate in the 2MASS J(ir) plate. The 2MASS catalog has two entries (unique identifiers 219744830, 219744828, theta 113.3°, rho 5.54"). The first correlates with UCAC 43470920 (magnitude 12.46), whose measures (Table 1; Table 3) agree well with the first and last measures for BAR 46AC given proper motion. The point source, supposedly of similar magnitude, does not appear on the 2MASS images in any wavelength nor can I detect an elongation of the C component in my images, in spite of the fact that BAR 46AB can be detected (if not measured reliably). Therefore, I conclude that the 2MASS point source 219744828 may be spurious.

18546+2409 POU3584? The pair reported herein is the only pair in the field that is close to the original measures of 1905 and 1951, but with primary and secondary reversed.

18555+0816J 1191 is probably the same pair as 18555+0815BRT3336. The approximate positions of these two doubles reported in the WDS brackets the position of the pair imaged and measured. Although magnitudes differ considerably, differences in theta and rho are closer. The 1915 measure of J 1191 (Table

3) is similar to the 1919 measure of BRT 3336 and probably within a reasonable margin of error. Given the magnitude differences, one might think that the nearby "pair" composed of UCAC 2.0 34705373 and 34705378 might be BRT3336. However, rough approximation of the 1915 position of these stars using Guide8 places them at about the correct PA (ca. 26°) but at 19-20" separation, not 5".

18561+2350POU3598 (Table 1). The 1951 measure does not agree with the original measure or the measure reported herein. UCAC2.0 40223194, just SW of the A component is not part of this pair.

18568+2456POU3605 (Table 1). This pair is in a crowded field. The measure herein agrees with the 1906 measure, as does the blue magnitude. The stars UCAC2.0 40553068 and 40553073, lying just SW of POU3605, might cause confusion although they are obviously fainter.

18571+2456HDS2686 (Table 2). This pair was first measured in 1991 and the present measures might seem anomalous. However, both are high proper motion stars and the UCAC2.0 1991.25 measure agrees well with the original measure. Casual inspection of the proper motions indicates that this is an optical pairing.

Other Comments

The following pairs could not be identified in the fields examined in ALADIN: 17112+2317POU3259, 17128+2433POU3264, 17152+2420POU3268, 17349+0102DOO 67, 17518+3756ES 2568, 17591+1613J 1135AC, 18218+3038L 21, 18260+2606L 22, 18319+2516GCB 33, 18341+1742J 2915AC, and 18386+2422POU3450.

Acknowledgements

This research has made use of the ALADIN Interactive Sky Atlas, the VizieR database of astronomical catalogs and associated catalogs (UCAC2.0, USNOB1.0, GSC 2.3, Tycho-2, 2MASS and AC2000.2), all maintained at the Centre de Données astronomiques de Strasbourg, France. Thanks to Drs. Brian Mason, Gary Wycoff, and Bill Hartkopf, U. S. Naval Observatory for their help with various parts of this research. Thanks to Arnie Rosner and Brad Moore, Global Rent-A-Scope (http://www.global-rent-a-scope.com/) for their support of research to the Remote Astronomical Society Observatory and to Mike and Lynne Rice of New Mexico Skies (http://www.nmskies.com) for ground support for the observatory.

References

- Bonnarel, F., P. Fernique, O. Bienayme, D. Egret., F. Genova., M. Louys, F. Ochsenbein, M. Wenger, and J. G. Bartlett. 2000. The ALADIN interactive sky atlas. A reference tool for identification of astronomical sources. Astron. Astrophys., Suppl. Ser., 143, 33-40
- Høg E., Fabricius C., Makarov V.V., Urban S., Corbin T., Wycoff G., Bastian U., Schwekendiek P.,
 Wicenec A. 2000. The Tycho-2 Catalog of the 2.5
 Million Brightest Stars. Astron. Astrophys. 355, L27-L30.
- Mason, B. D. 2006. Requested double star data from the U. S. Naval Observatory, J. Double Star Obser. 2(1):21-35.
- Mason, B. D., G. L. Wycoff, W. I. Hartkopf, G. G. Douglas, and C. E. Worley. 2001et seq.. *The Washington Double Star Catalog*. Astronom. J. 122(6), 3466-3471.
- Ochsenbein F., P. Bauer, and J. Marcout. 2000, The VizieR database of astronomical catalogs Astron. Astrophys., Suppl. Ser., 143, 23-32.
- Project Pluto. 2006. *Guide8*. Bowdoinham, ME (http://www.projectpluto.com/)
- Skrutskie, M. F., R. M. Cutri, R. Stiening, M. D. Weinberg, S. Schneider, J. M. Carpenter, C. Beichman, R. Capps, T. Chester, J. Elias, J. Hu-

- chra, J. Liebert, C. Lonsdale, D. G. Monet, S. Price, P. Seitzer, T. Jarrett, J. D. Kirkpatrick, J. E. Gizis, E. Howard, T. Evans, J. Fowler, L. Fullmer, R. Hurt, R. Light, E. L. Kopan, K. A. Marsh, H. L. McCallon, R. Tam, S. Van Dyk, and S. Wheelock. 2006. *The Two Micron All Sky Survey (2MASS)*. Astron. J. 131(2006):1163-1183.
- Space Telescope Science Institute (STScI) and Osservatorio Astronomico di Torino. 2006. *The Guide Star Catalog, Version 2.3.2* VizieR On-line Data Catalog: I/305
- Warner, B. D., 2006, MPO Canopus. Bdw Publishing, Palmer Divide Observatory, Colorado Springs, CO. (http://www.minorplanetobserver.com/ MPOSoftware/MPOCanopus.htm)
- Wiley, E. O. 2006. Neglected double observations 2006 No. 1: With notes on use of a robotic telescope. JDSO 2(4):145-153.
- Urban S.E., Corbin T.E., Wycoff G.L., Hoeg E., Fabricius C., Makarov, V.V. 1998. AC 2000.2: The Astrographic Catalog on the Hipparcos System. Astron. J. 115, 1212-1224.
- Zacharias N., S. E. Urban, M. I. Zacharias, G. L. Wycoff, D. M. Hall, D. G. Monet, and T. J. Rafferty. 2004. *The Second US Naval Observatory CCD Astrograph Catalog (UCAC2)*. Astronom. J. 127, 3043-3059.

E. O. (Ed) Wiley is a professor (Dept. of Ecology and Evolutionary Biology) and curator (Biodiversity Research Center) at the University of Kansas, Lawrence, where he studies the diversity and evolution of fishes and teaches biology. He also works through the Remote Astronomical Society to promote use of Global Rent-A-Scope facilities for astronomical research (http://www.remote-astronomical-society.org/).