Discovery of Stellar Duplicity of TYC 1326-01111-1 During Asteroidal Occultation by (86) Semele

Jerry Bardecker
Gardnerville, Nevada USA
bardecker@frontier.com

Steve Messner
Northfield, Minnesota USA
International Occultation Timing Association (IOTA)

Abstract: An occultation of TYC 1326-01111-1 by the asteroid (86) Semele on 2019 October 17 showed this star to be a double star. Both components of the double star were occulted as seen by two observers. The separation of the two components is 0.0046 ± 0.0012 arcseconds at a position angle of 11.7 ± 6.0 degrees. The magnitude of the primary component is estimated to be 12.66(r). The magnitude of the secondary component is estimated to be 12.87(r).

Observation
On 2019 October 17 Jerry Bardecker and Steve Messner observed the asteroid (86) Semele occult the star TYC 1326 01111-1 from two locations in the USA. The observations were made with 30cm (Bardecker) and 20cm (Messner) telescopes, using video with GPS-based time insertion to record the event. Messner’s two step event is shown in Figures 1. Bardecker’s two step event is shown in Figure 2. The star is of magnitude 12.0 (R). The expected magnitude drop at occultation for the single star was 1.40 magnitudes. Bardecker observed a 0.54 and 0.85 magnitude drop in each of the two events (D1 and D2) – a combined magnitude drop of 1.39 which is very close to the predicted 1.40. Messner observed a 0.52 and a 0.78 magnitude drop in each of the two events (D1 and D2) – a combined magnitude drop of 1.30. All recorded occultation times and data from the observers can be found in archived IOTA records for the event. The observations were made by the observers located at the sites and with the equipment as shown in Table 1.

The star is not listed in the Fourth Interferometric Catalog, nor is it listed in the Washington Double Star catalog.

The predicted observation path is shown in Figure 4.

Individual Event Times

Times for the disappearance and reappearance of each component of the double star are shown for the two observers in Table 2. These times are corrected for camera and VTI time delays. They are also the reported times that represent the Occult4 double star plot solution shown in Figure 3.

(Text continues on page 408)
Discovery of Stellar Duplicity of TYC 1326-01111-1 During Asteroidal Occultation by (86) Semele

Figure 1 -- Messner event – note stepped events circled.

Figure 2 -- Bardecker event– note stepped events circled
Discovery of Stellar Duplicity of TYC 1326-01111-1 During Asteroidal Occultation by (86) Semele

Figure 3: Occultation (86) Semele occultation of TYC 1326-01111-1 profile plot

Figure 4 – Predicted Occultation Path
Discovery of Stellar Duplicity of TYC 1326-01111-1 During Asteroidal Occultation by (86) Semele

Journal of Double Star Observations

Individual Event Magnitude Analysis

Each of the individual D and R events for both observers were then analysed using PyOTE 3.2.5. The estimated magnitude change for each event (D1, D2, R1, and R2) is shown in the Table 3.

Primary and Secondary Magnitude Estimates

Magnitude estimates for each component were then made using the brightness measurements derived by PyOTE 3.2.5.

Mean Photometric values were extracted from each observers light curves for the D2 and R1 events (the stepped events). These values, along with the baseline and event bottom values from the PyOTE analysis were used to calculate the primary and secondary star magnitudes. The Magnitude Calculator routine in Occult4 (Method 3 – Magnitudes from light curve values) *was used for this analysis.*

Light levels for the Messner observation:
* Light levels at D of 602 => 404 => 198
* Light levels at R of 198 => 394 => 602

Calculated star magnitudes for the Messner observation:
* Assuming a combined magnitude of 12.00
Magnitudes for sequence A-B-B-A: Mag A = 12.75, Mag B = 12.76
Magnitudes for sequence B-A-A-B: Mag A = 12.76, Mag B = 12.75

Light levels for the Bardecker observation:
* Light levels at D of 929 => 668 => 272
* Light levels at R of 272 => 660 => 929

Calculated star magnitudes for the Bardecker observation:
* Assuming a combined magnitude of 12.00
Magnitudes for sequence A-B-B-A: Mag A = 12.99, Mag B = 12.56

Although the calculated magnitudes of the primary (P) and secondary (S) components are somewhat similar, there is sufficient difference to establish a probable event sequence. Based on these values, a SPPS (or BAAB) event sequence is the most likely for this set of observations. Note: In this context: B=the secondary (dimmer) star and A=the primary (brighter) star.

A profile plot of the observational chords and calculated position angle and separation are represented in Figure 3.

Based on the data presented in this report, the double star characteristics are:

| Star | TYC 560-11111-1
| Coord (J2000) | RA 06h10m39.5s DEC +21°48’07.519"
| Mag A | 12.56-12.76
| Mag B | 12.75-12.99
| Separation | 0.0046 (± 0.0012 arcseconds)
| Position Angle | 11.7 (± 6.0 degrees) |

Acknowledgements

The authors would like to acknowledge and thank Tony George, for his invaluable assistance in the analysis of these events. Without his knowledge and encouragement this presentation would not have been possible.

References

PyOTE: http://occultations.org/observing/software/ote