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Abstract: Speckle interferometry yields diffraction-limited information from sequences of
atmospherically-degraded short-exposure images. Sophisticated algorithms have been pro-
posed by astronomers to reconstruct the actual image of an object. The reconstructed im-
ages allow one to measure the relative positions and the magnitude differences of the stars
in a multiple star system up to the resolving power of the available instrumentation. Here I
report on the main measurements and analysis required to apply one of these techniques,
the building block method using the bispectrum. Preliminary results obtained with simula-

tions and using a small telescope are shown.

1. Introduction

The atmospheric turbulence limits the resolv-
ing power of a telescope, including the smaller ones
usually available to amateur astronomers, when ob-
serving with typical seeing conditions. In the last
decades, professional astronomers have developed
several techniques to extract as much information
as possible from their sophisticated instrumenta-
tion, with speckle interferometry and recently
adaptive optics most commonly used. While the
latter technique is available only in the most ad-
vanced observatories in the world, the former can
be applied by a much broader community, including
amateur astronomers in the most simple set-ups,
both for scientific and educational purposes (Genet,
2015).

In my previous paper on this subject (Caloi,
2008), I reported on an application of speckle inter-
ferometry to the estimation of the separation and po-
sition angle of double stars using the Directed Vector
Autocorrelation method (Bagnuolo et al., 1992). Re-
garding the relative brightness of the two compo-
nents in a binary star, methods that are essentially
parametric are also available (Glindemann et al.,
1992). As an amateur astronomer, | have been never-
theless attracted by the idea of getting a full image of
the object under study. Even if parametric methods
require much less computing time and yield all the
information as well, when the nature of the object
under study is well known, as in the case of a binary

star, an image is necessary when dealing with more
complex or simply unknown objects, as in the case
of multiple star systems or diffuse structures.

After reviewing the existing literature and, I
must say, significantly underestimating the effort
needed to understand all the steps required to repli-
cate the algorithm, I decided to implement the iter-
ative building block method (Hofmann and Wei-
gelt, 1993). This data reduction technique is based
on the statistical properties of the bispectrum of
the atmospherically degraded optical transfer func-
tion of a telescope (Lohmann et al., 1983). For a de-
tailed review on the state of the art in the more gen-
eral field of optical interferometry applied to the im-
age reconstruction problem, I refer the reader to the
recent tutorial of Thiébautand Young (2017).

The main purpose of this paper is to highlight the
key aspects as well as some of the issues that, at least
for me, were initially quite difficult to familiarize
with, so that other amateur astronomers could have a
starting point before reading the original papers,
where the theory and limitations of the methods and
formulas reviewed here are covered in detail.

For rapid prototyping and deployment of all re-
quired calculations, I have used Matlab, which has pro-
vided me a very good compromise between perfor-
mance and ease of development.

2. Image Formation
The image reconstruction process is essentially an
inverse problem, since the main task is to recover the
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original image based on the result ofobservations. Sev-
eral noise sources make the recovering process subject to
uncertainties and biases. In order to appreciate all the
data and assumptions necessary to deal with these as-
pects, it helps to review the main physical processes in-
volved in the image formation on the detector that are
later considered to recover the original image. Other re-
finements could be evaluated, in particular on how to
model the actual functioning of a real detector, but they
are not considered here.

The near axis image formation process can be
described as follows (Klein and Furtak, 1986). Let us
consider a point-like monochromatic optical source,
like a single star observed using a narrow-band filter,
located in the ideal source plane at position (x', )') at
a large distance R'g from the telescope, thus forming

a small angle
/ x|2 + y.z

Ry

with respect to the telescope optical axis. The re-
sulting electric field intensity on the image plane,
where the detector is located, is proportional to the
Fourier transform of the transmission function (X%,
7) defined on the telescope aperture plane. The
transmission function summarizes the combined
effects of the telescope aperture, its aberrations
and the atmospheric disturbances. The resulting
intensity distribution on the image plane can be
represented as a function PSFd(x y) (the so called
point spread function at wavelength 1) centered on
(fx/R%, fv'/R'y), where " is the actual focal length of
the telescope. The image formed by the telescope
on the detector is thus located in the position that
is expected by geometrical optics, and spread ac-
cording to the PSF. In the case of an extended in-
coherent optical source with an intensity distribu-
tion o(x,y) according to geometrlcal OpthS the actu-
al image intensity distribution 7 (x y) is the convo-
lutlon of o(x, y) with the point spread function
PSF* (x,»).

i* (x,y)zo(x,y)*PSFi (x,») (1]

Equation 1 holds in the isoplanatic approxima-
tion, i.e. when the spread function does not change in
the region of interest, and if the emission from the
source object is not coherent, as is the case with the
light emitted from a star. Under ideal conditions the
point spread function for a given wavelength A
would depend on the telescope only but, due to the

l'tADU (

atmospheric turbulence, the transmission function 7
(%,7) changes rapidly both in time and space and, as
a consequence, the same happens to PSF”(x,y). Thus,
the actual intensity distribution z,)(x ») at each time ¢t
depends on a different point spread function PSF/*
(x,y) such that

i (x,y)=o(x,y)* PSF/ (x,y) [2]

Given the incoming intensity distribution i/ (x, y),
the actual number of photons detected per pixel will
depend also on the quantum nature of light and on the
actual detector used, whose main characteristics are the
following: level of dark current generation, quantum ef-
ficiency, electronic read-out noise, electronic biases,
presence of defects and hot pixels. These effects are par-
ticularly important when the average total number of
detected photons per speckle " is low, some hundreds
or thousands to give an order of magnltude and must be
dealt with in order to avoid estimation biases(whichdo
notdisappear by simply increasing the number of record-
edi images used in the data reduction process).

If i/(x, y) is normalized so that its total value over
the image Elane is one, the expected number of photoe-
lectrons i/"“(x,y) is then given by

" (x,) = N [o(x, )+ PSE (x,3) |+, [3

where n,, represents the contribution of thermally
generated electrons, here assumed to be independ-
ent from the pixel location.

The actual number of generated photo-
electrons P(i/" (x ) follows a Poisson distribution
with average given by i”*(x, y). The subsequent
mechanism of charge shift and amplification typical
of CCDs, introduces an additional noise compo-
nent, the so called read-out noise, which can be
represented by a random variable normally distrib-
uted with zero mean and variance ¢,%, indicated in
what follows by N(0,6.%). An additional time invar-
iant bias bpc(x,y) and a spatial dependent sensi-
tivity factor /(x, y) are also normally taken into ac-
count (due to electronic bias, defects and hot pix-
els, dust, etc.). The final digital value (ADU) rec-
orded for each pixel is obtained by summing all
three previous components and dividing by the detector
gain G,

P( phe(x y))l(x,y)JrN(O,of)nL

x,y) =
bDC (xay)
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where "’ (x,y) represents the detected speckle-

gram at time ¢.

Equations 3 and 4 provide a simplified repre-
sentation of the detection process, and they have
been used for the actual implementation of the da-
ta-reduction process of this work. In the following
sections, position (x,)) will be denoted by x to sim-
plify expressions, with the understanding that x is
the pixel bi-dimensional position.

3. Power Spectrum Estimation

A data cube {i/PY(x)}", of M short exposure
frames (specklegrams) of the object is the starting
point of the analysis. A similar data cube
{d"*Y(x)}*~ obtained with the telescope aperture cov-
ered is needed. The first step in the image reconstruc-
tion process requires the computation of the power
spectrum, both its average and variance. Each frame
i"PY(x) is first corrected for the gain, G, the bias bpc(x)
and the flat field /(x), to yield the actual photo-electrons
plus read-out noise per pixel

_ Gi'"Y (x)=bpc (x)

(R TF

It is subsequently cropped within a square frame cen-
tered at the position corresponding to the speckle
moving average maximum intensity. The frame
size is chosen large enough to contain the entire
speckle, with each side made by a number of pix-
els equals to a power of two, in order to reduce the
computation time of subsequent applications of
the Fast Fourier Transform algorithm. The total
number of photo-electrons and thermal electrons
per frame N; = NP +N,’h is also computed. The
same cropped regions are used with the dark frames
sequence to compute the total dark current due to
the thermally generated electrons N,*" per frame.
Here we assume that N/ and N have the same ex-
pected values.

The discrete Fourier transform /(u) = DFT(i(x))
where u indicates the bi-dimensional frequency com-
ponent, is performed for each specklegram. It has
been shown (Goodman et al., 1976) that at low light
levels, a typical situation in speckle interferometry,
the computed power spectrum must be compensated
for biases due to the photon noise inherent in the de-
tection process. Gordon and Buscher (2012) derived a
formula for a bias-free power spectrum estimator S,(u),
when photon noise, thermal noise (dark current), and
read-out noise are all taken into account. The main
stated assumption in their study is that the various noise
sources considered are independent and additive.
Moreover the overall noise on different pixel positions

is assumed to be statistically independent.
Under discrete Fourier transform conditions, which
hold in our case, their proposed estimator becomes

S, () =|1,@)[* —Z(it (x)+ aj(x)) (5]

X

where x indicates the pixel position, i(x) the recorded
intensity, and ¢,%(x) is the read-out noise variance. Un-
der the additional assumption that the read-out noise
does not depend on the detector position, i.e. g.(x) = o,
equation 5 becomes

S, () =|L, @)’ =N, =N .62 [6]

pix“e

where N,= NP + N/ is the total number of photo-
electrons and thermal electrons per frame and N, is the
total number of pixels. By averaging S(u) we obtain an
unbiased estimate of the power spectrum
2 2
5= <|[(u)| >— (N)=N 507 [7]

where the operator <> represents averaging over the en-
tire sequence of specklegrams. The sample variance of
such estimate var(S) is then used to calculate the fre-
quency dependent power spectrum standard deviation
O-S(u),

os(u)=|var(Su))/ M (8]
where M is the number of frames. The resultin% power
spectra has a central peak which is given by (N + N™?
where NP' is the average number of photo-electrons
per frame and N"™=N*" is the average number of elec-
trons generated by the thermal noise. By correcting the
central peak component for the thermal noise, the final
estimate of the power spectrum S(u) is obtained. No
further correction is necessary outside the central peak
if the thermal noise is spatially uncorrelated, so that its
power spectrum is negligible for spatial frequencies
different from zero.

The same analysis just described is repeated for a
nearby reference star, which must be observed with
similar seeing conditions as the object under study.
Once we have estimated the object power spectrum
Sop(u) and its variance o'zsobj(u) as well as the refer-
ence star’s power spectrum S,(u) and its variance
o”sref(1t), we can apply the standard procedure of speck-
le interferometry (Labeyrie, 1970) which yields an esti-
mate of the true object power spectrum |O(u)|* = Son(u)/
S,e(1) up to the telescope cut-off frequency, and its var-
lance O'z‘o(u)‘z
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2 2 2
%owf _| 95, @ | | 95, @)
|0(1/l)|2 Sobj (u) Sref (u)

The power spectrum |O(u)|* does not contain any
information regarding the (phase o(u) of an object
visibility O(u) = |O(u)| ™ from which the image
could be reconstructed by applymg the inverse Fourier
transform. As a consequence, it cannot be used
alone to recover an object image without some prior
information about the object itself. The bispectrum is

one observable quantity that contains such infor-
mation.

4. Bispectrum Estimation

Let us first recall its definition. Given an intensity
distribution i(x) and its Fourier transform /(u), the
bispectrum is defined as Fw,v) = IWIWI (ut+v),
where 7" (1) indicates the complex conjugate of /(u).
Similarly, for the true object intensity dlstrlbutlon o(x)
we have 09w, v) = O(w)O(W)O'(u + v) = 109(u,v)|
exp[Bo)(u,v)]. It has been shown by Lohmann et al.
(1983) that the phase of the time-averaged bispectrum
of the atmospheric transfer function is close to zero
while its modulus is not and, as a consequence, the
phase of the observed average bispectrum ;s (u,v) is
equal to the phase of the object bispectrum So)(u,v).
This relation holds for ||, |[v|, and |u + v| smaller than
the telescope cut-off frequency. They also describe an
iterative computation to recover ¢(u) from Soc)(u,v).
This property highlights the importance of the bispec-
trum for image reconstruction.

Astronomers have also investigated in detail how
to take into account the effects of the photon noise
(Wirnitzer, 1985) on its measurement. These effects
lead to a bias that is significant at low light levels,
when the number of photons detected per frame is of
the order of less than some thousands. A bias cannot
be overcome by simply increasing the number of de-
tected interferograms. If compared to the variance,
its significance becomes greater when the number of
samples used to compute the average increases.

In what follows, I report the formulas presented
by Gordon and Busher (2012). They extend the orig-
inal results of Wirnitzer for the bispectrum, to the
case where several additive noise sources are sig-
nificant at the same time inthe general framework
of optical interferometry.

In our case, the DFT conditions stated in their
paper apply. Moreover, assuming that the read-out
noise does not depend on the pixel position, the giv-
en unbiased estimator reduces to

B,(u,v) = L), I} (0 +v) = |1, @) =, 0] -

|1, (u+v)| +2N, +3Nplxo-e +C*S5(u,v) [10]
C=-3N, szxae

where, following the same convention used in the pre-
vious section, N, = X, i,(x) is the total number of photo-
electrons and thermal electrons recorded per frame, N,,;
is the total number of pixels, and 6, is the read-out
noise variance. By averaging (10) over ¢, we obtain an
unbiased estimate of the bispectrum.

Finally, taking into account (6), we get

(Bw,v)) = (1)1 +v)) = |s@) =[SO - [

11]
IS +v)]* =(N)+C*5(u,v)

We can now combine the object’s visibility modu-
lus |O(u)|, obtained as described in the previous
section, and the bispectrum phase (also called
closure phase) f(u, v) =arg(< B(u, v) >) to ob-
tain our estimate of the object’s bispectrum

0P (u,v) = |0@)||0M)||0u +v)| P [12]
5. Image Reconstruction

We can now proceed to search for the object’s
image, whose bispectrum shows the best agreement
with the unbiased average bispectrum obtained as
described in the previous section.

The algorithm used here is the building block
method (BBM) and the details are provided in the
original paper by Hofmann and Weigelt (1993). An
improved algorithm for the same purpose and based
on similar considerations was proposed later by the
same authors (Hofmann et al., 2014)

The main idea of the building block method is
to reconstruct the object’s image iteratively, by
modifying the initial guess by adding one block at a
time. Each new block position is chosen in such a
way to reduce the distance d;, also called cost func-
tion, between the bispectrum of the new image after
k 1terat10ns O (u, v) and the measured bispectrum
O®(u, v). The process is repeated until the distance
is minimized according to a given stopping rule.

In the building block method the user can choose
among different metrics in order to define a good-
ness of fit. The approach followed here does not in-
clude any regularization technique and implements
the following definition of distance d.
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0(3) (u,v)— o® (u, v)

dudv [13]

k—j‘

0<3>(u v)

which assigns a greater weight to those regions
where the variance in the measured data is lower
and where the integral represents summation over
the 4-dimensional bispectrum support. As given in
Appendix A of Hofmann et al. (2014), one source of
uncertainty depends on the estimated power spec-
trum and it translates into an uncertainty in the
bispectrum modulus as

=0.5/S)S(MS(u +v) -

0‘0(3) (u,v)‘

[14]

o5 () o5 o5uty)
S?w) S (v) S*u+v)

which holds for small relative errors.

The second source of uncertainty comes from the
phase of the estimated object bispectrum, whose
variance o” By can be calculated conveniently as
described in Glindemann et al. (1992) and Gordon et
al. (2012) as the variance of the projection of each
frame’s bispectrum on a direction perpendicular to
their average, divided by the square of their average
modulus and the number of frames. I have consid-
ered other angular dispersion measures based on di-
rectional statistics, as well as an approach based on
the bootstrap method, but a preliminary investigation
has not resulted in improved results so far.

Regarding the value of the variance required by
the weight factor in the cost function used in the
building block method, several approaches are pos-
sible. The approach used here is to consider the
bispectrum modulus and phase as two independent
random variables. In this case, the bispectrum vari-
ance can be approximated by

2
2 2 3 2
o) = U‘Om(u’v)‘ +‘O( )(u,v)‘ O B(u) [15]

which holds when both modulus and phase vari-
ances are relatively small. A better approximation,
which takes into account the wrapping effect in the
complex plane, is presented in Hofmann et al.
(2014), but has not been used for the preliminary re-
sults reported in the following sections.

Pauls et al., (2005) propose a different model,
where o0y and O'Zﬂ(u v are reported and used sepa-
rately in order to arrive to a more general error model

for the bispectrum.

As a matter of fact, I found the analysis of the
quality of the reconstructed image as a conse-
quence of different choices of the cost function to be
an active field of research among professional as-
tronomers in general and not only for the BBM. Af-
ter initially trying several different versions of the
building block cost function, with some changes in
the final outcome of the reconstructed image, I have
chosen expressions 13 to 15 for the actual imple-
mentation of the algorithm, mainly to reduce at the
minimum the overall complexity needed to get a
satisfactory outcome with the objects considered in
this study, i.e. triple and binary stars.

Because the image is built by changing one pixel at
a time, some details that are not consistent with the
actual maximum resolving power of the telescope
can be generated. To correct this outcome, the image
resulting from the optimization process is smoothed
by convolution with the known theoretical PSF of
the telescope.

To sum up, the main steps required to carry out
the image reconstruction by bispectrum speckle
interferometry are:

e Estimate the object power spectrum and from
that the modulus of the object visibility | O(w)|
e Estimate the object’s bispectrum phase B(u, v)
e Combine the two previous results to get the
object bispectrum |O(w)||O(V)||O(—u — v)|eB

(w) and its variance
e Fit the object bispectrum, the iterative building

block is used here, to recover the object image

taking into account the estimated uncertainty in
the bispectrum according to a suitable cost
function

e Smooth the resulting image with the theoretical

PSF of the telescope to avoid super-resolution arti-

facts
6. Simulation

In order to verify the reconstruction procedure
under controlled conditions, simulated specklegrams
have been generated assuming a monochromatic
source by replicating the main physical processes
introduced in section 2. The simulation starting point
is a multiple star system, represented by a bi-
dimensional normalized intensity function o(x),

z:;l Aié‘(x — X )

o(x)= -
Zizl 4
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where x; represents the position and A4; the intensity of
each star’s component i. Imaging equation 1 is then
used. The PSF of each simulated frame is generated us-
ing a complex transmission function with a modulus
defined by the geometry of the telescope aperture
(primary and secondary mirror diameters) and a phase
¢(X,7) dependent on the position in the entrance pupil,
the phase screen, which represents the effect of the at-
mospheric turbulence. The algorithm used to generate
the phase screen is based on the Fast Fourier Transform
method (McGlamery, 1976). The FFT method com-
putes the phase screen by means of the inverse Fourier
transform of the product of a circular complex Gaussian
random noise with zero mean and unit variance and the
square root of the phase power spectrum density W,(f").
For this purpose we can use Kolmogorov’s law for ener-
gy dissipation in a viscous medium

0.023

W(,,(f):W [17]

where 7, is the Fried’s parameter. This model is as-
sumed to hold for spatial frequencies 1/L, < f < 1/l,,
where L, 1s the outer scale and /, is the inner scale of
turbulence. Other expressions for ¥, for example the
von Krmn model, as well as other improved methods
have been proposed (Lane et al., 1992; Sedmak,
2014) to avoid some shortcomings of the Kolmogo-
rov formula and to obtain simulations in better agree-
ment with the actual effect of the atmospheric turbu-
lence. I have not tried to implement them because
their complexity would have taken me too far from
the already challenging objective of this study, i.e. to
replicate the image reconstruction algorithm using
data acquired with an instrumentation setup typi-
cally accessible to an amateur astronomer.

For each frame a new random phase screen is
generated and, from that, a new normalized PSF is
obtained, which is then convolved with the object
distribution intensity given by expression 16. Photon,
thermal and read-out noise are subsequently added
according to the processes already described in sec-
tion 2. Finally, the image is modified according to a
given uniform bias and divided by the detector gain
to get a final specklegram according to expression 4.

7. Comparison to Simulated Data

The application of the previous simulation and data
analysis steps to known objects through simulations, as
well as the comparison with the results obtainable with
other analysis methods in the special case of binary
stars, has been very helpful to correct initial coding er-
rors and to check the actual performance of my imple-

mentation of the image reconstruction algorithm.

The entire data reduction process can be roughly
divided into two phases, i.e. power spectrum and
bispectrum estimation, followed by the application of
the building block method. When the object is
known to be a binary star, the resulting separation
(), position angle (¢) and magnitude difference (Am)
can also be compared with the same parameters ob-
tained by least mean square (LMS) fitting the power
spectrum or the bispectrum. In these cases the weight
factor is chosen to be equal to the reciprocal of, re-
spectively, the variance of the power spectrum o”s(u)
and the variance of the bispectrum ¢”6%,). For de-
tails on a similar method used for LMS fitting the
bispectrum phase of a binary star, see Glindemann
et al.(1992). The results of four simulations with
known binary stars are given in Table 1. For each
case, the known parameters are compared to those
obtained using the building block method (BBM)
and the parametric fitting of the power spectrum
(PS) and bispectrum (BS). For reconstructed imag-
es, the luminosity of each star component is meas-
ured by summing the values of all the pixels sur-
rounding the pixel with the maximum intensity.
Telescope, filter and detector parameters are kept
fixed and assumed equal to those given in Tables 2
and 3.

The results reported in Table 1 are not intended
to be comprehensive, rather they give an idea of the
many factors that influence the measurement out-
come, in particular under extreme conditions (very
close pairs, low brightness, bad seeing, high detector
thermal and/or readout noise). Even changing the da-
ta analysis method has a substantial influence on the
estimated values in these cases. When the simulated
conditions are more favorable, the agreement among
the different methods increases significantly. In gen-
eral, I found the magnitude difference subject to a
greater relative uncertainty compared to the separa-
tion and position angle. This observation is in agree-
ment with similar considerations generally reported
in the literature.

Considering that the main purpose of these
comparisons was to check the correctness of the im-
plemented data-reduction algorithm, and notto in-
vestigate the effectiveness and limits of an estab-
lished image reconstruction technique, I found the
agreement among different methods encouraging.

As an additional test and in order to verify the per-
formance of the reconstruction algorithm with a more
complex object, I considered also the case of a triple
star with components AB and AC separated by 1.2
and 0.8 arcsec respectively, position angles 0,5=23°,
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Table 1. Binary star parameters estimated from 200 frames generated under different simulation conditions:
(a) N'=30000, nin=15, 0.=10, bpc =10, r;=2.5 cm; (b) N""=3000, nin=5, 0e=7, bpc =15, rj=2.5 cm;
(c) N*"=1000, nin=35, 0e=7, bpc =15, rg=5.0 cm; (d) N"'=500, nsn=2, 0e=2, bpc =5, 1;=3.0 cm

# e 0 Am PBBM Onau Amgpy Prs Ops Amps PBs Oss Amgs
(") () (") () () (°) () (°)

(a) 1.2 23 0.55 1.16 21.7 0.71 1.17 22.1 0.63 1.17 21.9 0.59

(b) 1.3 210 0.25 1.25 210.7 0.27 1.30 206.0 0.41 1.23 208.1 0.0

(c) 1.3 210 0.25 1.21 211.1 0.21 1.26 211.2 0.32 1.26 211.1 0.13

(d) 0.8 125 1.0 0.80 124.2 0.98 0.81 121.3 0.87 0.80 121.5 0.76

0Ac=125°, and with a magnitude difference Amag=0.55
and Amac=0.99. An example of a specklegram simulat-
ed by using these parameters is shown in Figure 1. The
estimated power spectrum, after bias subtraction and cal-
ibration is shown in Figure 2. As can be seen, the actual
usable region is smaller than the theoretical maximum
one given by the telescope cut-off frequency - which in
this case corresponds to a circle with radius of about 15
pixels. It is the measured variance that gives the weight
to assign to different regions when the data reduction
process is carried out. The result is in any case suf-
ficiently defined to be somewhat different, as expected,
from the typical fringe pattern of a simple binary star.
The image reconstructed using the building block meth-
od is shown in Figure 3. The estimated values of the
magnitude differences from the reconstructed image are
Am=0.54 and Amyc =0.97, which are very close to the
actual values of the simulated object.

8. Experimental Setup and Calibration

Speckle observations have been conducted with
a 9.25" Schmidt-Cassegrain Celestron fitted with a
JMI focuser and a Powermate 2.5X focal extender.
The detector is an Imaging Source DMK
21AU04.AS based on a Sony ICX 098 BL chip, fit-
ted with a Green Astronomik Type Ilc filter. Nomi-
nal specifications for each component are summa-

rized in Table 2.

The image reconstruction requires some input pa-
rameters that must be calibrated before the algorithm is
executed. These estimates are given in Table 3.

The drift method (Caloi, 2008) is used to esti-
mate the image scale and its orientation. Based on
this calibration, the theoretical image cut-off fre-
quency fc is found to be 0.4594

DAx D
:—:K—
Je Af A

where D is the telescope primary diameter, Ax is the
pixel size, f is the telescope effective focal length, A
is the effective transmission bandwidth center, which

Figure 1: Example of specklegram of a triple star gen-
erated with simulation parameters N'"=3000, nin=10,
Oe=5, bpc =15, r;=3.0 cm. Image scale is 0.2171
arcsec per pixel.

5 10 15 20 25 30

Figure 2: Estimated power spectrum (log scale) of a triple
star from a sequence of 200 simulated specklegrams.
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5 10 15 20 25 30

Figure 3. Reconstructed image of a simulated triple star.

combines the nominal filter properties and the fre-
quency dependent quantum efficiency of the detec-
tor, and K is the image scale in rad/pixel. The cut-off
frequency is less than 0.5, so this setup fulfills the
Nyquist condition for digital image sampling.

Regarding the gain G of the CCD camera used in
this study, the only related information I found on the
producer website is the amplification scale which has
a linear working range of 0 to 1023 corresponding to
a 0 - 36 dB range (20 dB corresponds to an amplifi-
cation factor of 10). Lacking such information,
which is required if we want to apply the image re-
construction algorithm under low light conditions, I
followed two different methods to estimate G as a
function of the actual detector settings used during
observations.

The first and less accurate method is based on
the relation between the variance of a Poisson pro-
cess with its mean, which gives

G(e 1 apU )=~
O-C
where y,. and 6. are the mean and the variance respec-
tively of the total counts, per given time interval, in a
selected region of the detector with bright and uni-
form illumination, when photon noise is the main
source of noise and the bias is negligible. The second
method is less sensible to other noise sources or bi-
ases and requires measurement of . and .’ as before
under different light conditions. The gain is estimated
as the slope of the linear regression of . vs ol

In addition, flat field images have been obtained
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Table 2. Observation Nominal Parameters

Parameter Symbol Value

Telescope diameter D 0.235 m

Telescope seclzondary a 0.085 m

obstruction

Transmission bandwidth A +#AA 538 nm £ 40 nm
Pixel size (square shape)| Ax - Ax | 5.6 um - 5.6 um

Table 3. Calibrated parameters. Gain G is estimated
for a nominal setting of 1023 on the DMK214AU04.4S
CCD camera.

Parameter Symbol Value
Image scale K 0.217 as/pixel
Detector gain G 2.26 e /ADU
Thoefofr eftrlecqaule nccu ;— fo 0.4594

to correct raw frames for non-homogenous spatial
sensitivity, biases, or for the presence of dust on the
detector’s chip. Similarly, read-out and thermal noise
have been estimated with the telescope aperture cov-
ered and with the same exposure time and CCD de-
tector temperature of the actual observations of the
target object and the reference star. A typical observ-
ing session requires, for each target object, obtaining
several sequences of some hundreds of frames of
both the target and the reference star, followed by
similar sequences to estimate bias, dark current and
read-out noise. I have used single frame exposure
times in the 20-40 ms range, to freeze the speckle
pattern, depending on seeing conditions and object
brightness. The presence of a filter, the very short
exposure time, and other practical considerations
reduces significantly the possibility to successfully
reconstruct the image of objects with a magnitude
higher than 8 with the experimental setup used in
this study.

9. Comparison to Measured Data

I have applied the image reconstruction procedure to
video sequences captured during three different nights
with the equipment already described in section 8. Due
to the small size of the telescope, all objects considered
have been binary stars. More complex objects, like close
triple stars could become interesting targets if at least a
medium size telescope with an aperture greater than 40
cm were used.

Even if seeing conditions were rather poor, 2
to 4 arcsec and windy, during all three observing
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Figure 4. Average power spectrum of STF1909.

sessions, the high degree of atmospheric turbu-
lence has facilitated the test of the performance of
the reconstruction process, because speckles angu-
lar sizes were significantly greater than the resolving
power of the telescope.

For each target, sequences of 200 up to 500
frames have been recorded and the measurements re-
peated during the same night. The dark current con-
tribution was found to be negligible, while actual
read-out noise was estimated to be between 3e and
7e¢ depending on the chosen detector parameters and
frame rate. Comparative results are given in Table 4
similarly to what has been done in Section 7 for sim-
ulated objects. Separations, position angles, and
magnitude differences are extracted from the WDS
catalog using the online search engine available at
http://stelledoppie.goaction.it (Sordiglioni, 2012). Com-
parisons of measured magnitude differences to the
known values must be considered indicative because
the bandpass and center wavelength of the optical fil-
ter used in this study are just a proxy of a V-band
standard filter. Moreover, the results obtained by
model fitting the power spectrum (PS) and bispec-
trum (BS) are based on simple gradient descent mini-
mization with a starting point given by the values
obtained using the DVA method. As a consequence,
the actual results could have been influenced by the
presence of local minima in the optimization pro-
cess.

Overall, the dispersion around known values for
the magnitude differences is significantly greater
than the errors in the separation and position angle,

regardless of the method used. Nevertheless, these
preliminary results confirm that the BBM yields rea-
sonable estimates when compared to other methods
applied to the same input data without a priori as-
sumptions on the nature of the object under study.

The standard deviation of the error in the magni-
tude differences based on all 25 measurements of the
nine binary stars in Table 4 is 0.62 mag for the
BBM, and is slightly less than the values 0.76 mag
and 0.73 mag obtained by least-square fitting the
power spectrum (PS) and the bispectrum (BS) re-
spectively. The results appear consistent with the
known difficulties in performing photometry of close
binary stars. At the same time, some improvement is
to be expected with a fine tuning of the detector
parameters used during observations - shutter
speed, detector gain and frame rate - and by per-
forming measurements under less severe condi-
tions, i.e. with a better and more stable seeing.

To give an example of the outputs of the recon-
struction process for STF1909, Figure 4 shows the
average power spectrum after calibration with the
reference star. In this case, the typical fringes of a
double star, with separation very close to the max-
imum resolving power of the telescope, areclearly
visible. The reconstructed image, not corrected for
the actual detector orientation, is shown in Figure 5
after convolution with the telescope theoretical
PSF.

On a desktop PC with an Intel(R) i3-4130 @
3.40 GHz processor the required computation time
for a selected region of 32 x 32 pixels is less than 5
minutes for 200 iterations, but increases significantly
for images of a larger size. In all cases considered,

5 10 15 20 25 30

Figure 5: Reconstructed image of STF1909.
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Table 4: Estimated binary star parameters vs. known values from the WDS catalog using image reconstruction (BBM) and model fitting both
the power spectrum (PS) and bispectrum (BS). The number of observations per night N, is given in the last column.

Disc Date

WDS BBM
(" | e() Am | p(") | 6(°)

Am

P(")

PS

6(°)

Am

("

BS
o (°

)

g

Nobs

.53 0.9 359.
.29 11.09 4.
.26 .44 | 340.
.65 .66 | 305.
.65 .62 | 304.

STT 413AB | 2016.479 .92 | 359.

STF1998AB | 2016.479 .09 6.
STF3050AB | 2016.83 .41 | 340.
.68 | 302.

.64 | 304.

STF 228 2016.83

| Rl w|l o

STF 228 2018.078

STF 333AB | 2018.078 .33 | 209.9 .65 .23 | 209.
.21
.93

.9

STT 215 2018.078 .57 | 177.89 .5 175.
.16 | 197.

.48 80

STF1687AB | 2018.078
STF1909 2018.078

.18 |200.16
.52 80.84

O}—‘}—‘l—‘OO[\JI—‘O-o
ol O N O O] O] Of K
ol | | Pl O Ol N

NP9 NN o] o] 0N

.63
.2
.85
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.62
.24
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.36
.8

ol PN RO O
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.54
.08
.41

ol Pl O O O N| | O

1.
6.
340.
303.
305.

<Nl P J] 0|l oy © o

44

olo/ PO PO O|R

.36
.31
.99
11
.22

.28
72
.29

o|lRr|RPr|lOolOo O N | O|lo

.92
.09
.44
.63
.71
.89
.48
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.44

1.
6.
340.
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303.
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26
2

=
w

.21
.58
.29

o o PP OO, O|] O]
~J
N

NN NN NN N oy

less than 50 iterations were required. The plot in Fig-
ure 6 shows how the value of the cost function d; de-
creases after several iterations in the building block
method for STF1909. As a general rule the recon-
struction can be stopped once the rate of decrease of dx
reduces significantly.

10. Conclusions

The main concepts involved in the recovery of an
image from speckle interferometric data have been
reviewed, with some details on how to correct for bi-
ases in the power spectrum and bispectrum and on
how to calculate the frequency dependent variance
of each estimated quantity. The building block meth-
od using the bispectrum has been successfully repli-
cated, initially with simulated data and later with the
estimate of the separation, position angle and mag-
nitude difference of a number of close binary stars.
The obtained accuracy for the magnitude differences
is found to be about 0.6 mag with the equipment and
the small telescope used in this report, even if some
improvement is to be expected under more favorable
observing conditions.

Finally, I hope this study and the listed bibliog-
raphy will also provide a useful starting point to
other amateur astronomers interested inthe recon-
struction of an image from speckles data using the
bispectrum.
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Figure 6. Residual value of the cost function dy at iteration
k in the building block method.
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