Journal of
 Double Star Observations

Inside this issue:

Measurements of Neglected Double Stars: November 2014 Report Joseph M. Carro	65
A New Visual Binary System in Auriga Abdul Ahad	70
Double Star Measurements for 2011 Part 2 Frank Smith	73
A New Double Star in Cepheus T. V. Bryant III	76
A New Visual Binary System in Aquarius abdul Ahad	78
Double Star Measurements at the Southern Sky with a 50 cm Reflector and a Fast CCD Camera in 2014 Rainer Anton	81
Reaching Magnitude +16 with the Modified Video Drift Method Ernest W. Iverson, Richard L. Nugent	91
Measuring Double Stars with Position Circle and Filar Micrometer Screw: Report \#2 Robert Korn	98
Double Star Observations with a 150mm Refractor in 2014 Marc Oliver Maiwald	102
Searching for New Double Stars with a Computer T. V. Bryant III	108

Measurements of Neglected Double Stars: November 2014 Report

Joseph M. Carro
Cuesta College, San Luis Obispo, California

Abstract

This article presents measurements of 30 neglected double stars. The stars were selected from the Washington Double Star Catalog published by the United States Naval Observatory. The photographs were taken by a remote telescope. The measurements were done by the author.

Methodology

The photographs were taken using a telescope located in the Canary Islands near the west coast of Africa. The telescope is located at an elevation of 2,300 meters. The instrument has a focal length of $3,910 \mathrm{~mm}$, an aperture of 356 mm , and is a Celestron unit of Schmidt-Cassegrain design. The observatory, which is called SLOOH, is a part of the Institute of Astrophysics. The methods used to calibrate the instruments of the SLOOH Observatory are unknown to this author.

The camera used most frequently was a CCD SBIG 10XME, but some photographs were taken using a CCD SBIG 2000XM.

The photographs were analyzed by the author using the programs CCD Soft v5 and SKY 6. The two programs are products of Software Bisque.

After accumulating the photographs, averages were calculated for the position angles and separations. All of the star patterns were compared with the data from ALADIN (part of the SIMBAD site) or with the SKY X program, to insure correctness.

After measuring each star and calculating the results, comparisons were made with the published data. The results are listed in the table. The numbers in the table represent averages of measurements, or, in the case of a single measurement, the actual value.

Report

The following information was reported for each star: the WDS code with components, the discoverer
code, the constellation, the position angle, the separation, the date of the first observation, and, under measures by the author, the results of other authors. The number of measurements for WDS values was the number of past observations reported in the WDS prior to these current observations.

The column headings are: number of the Washington Double Star and components, DC = Discovery Code, PA $=$ position angle, Sep $=$ Separation, Mts $=$ number of measurements, Con $=$ Constellation, and the first observation date.

Acknowledgements

Grateful appreciation is extended to Russell Genet for his guidance and to Thomas Smith for his support.

This research made use of the SIMBAD database operated at CDS, Strasbourg, France, and the Washington Double Star Catalog maintained by the United States Naval Observatory.

References

Arnold, D., "Divinus Lux Observatory Bulletin: Report 5", Journal of Double Star Observations, 2, 79-86, 2006.

Arnold, D., "Divinus Lux Observatory Bulletin: Report 20", JDSO, 6, 5-11, 2010.
Arnold, D., "Divinus Lux Observatory Bulletin: Report 27", JDSO, 9, 10-18, 2013.

Measurements of Double Stars: November 2014 Report

WDS number/Comp	D. C.	P.A.	Sep	Mts	Con	Date
$00313+6321$ AB	BU 107	354.2	5.7	1	CAS	2014.641
WDS		0	2.0			1873
WDS		354	5.8	25		2012
00313+6321 AC	BU 107	336.8	46.8	1		2014.641
WDS		336	46.9			1898
WDS		337	46.9	14		2012
00313+6321 AD	BU 107	145.2	51.7	1		2014.641
WDS		146	50.3			1898
WDS		145	51.8	14		2012
00313+6321 AE	BU 107	171.4	111.4	1		2014.641
WDS		171	113.6			1898
WDS		172	112.4	12		2012
00313+6321 AF	BU 107	114.2	154.1	1		2014.641
WDS		115	150.5			1898
WDS		115	154.3	13		2012
00313+6321 AG	LV 13	265.3	20.8	1		2014.641
WDS		267	21.2			1916
WDS		266	21.1	7		2012
00313+6321 AH	BU 107	93.0	46.0	1		2014.641
WDS		94	45.6			1908
WDS		94	46.3	9		2012
$00313+6321$ BC	BU 107	334.5	41.4	1		2014.641
WDS		334	41.5			1898
WDS		335	41.3	14		2012
$00313+6321$ BD	BU 107	147.9	56.7	1		2014.641
WDS		149	55.4			1898
WDS		148	57.0	15		2012
00313+6321 CD	BU 107	150.7	98.	1		2014.641
WDS		151	96.8			1898
WDS		151	98.1	16		2012
00313+6321 CE	BU 107	167.1	157.2	1		2014.641
WDS		167	159.4			1898
WDS		168	158.1	13		2012
00313+6321 DE	BU 107	190.7	69.0	1		2014.641
WDS		188	71.3			1898
WDS		191	69.1	13		2012
BD+62 94						

Other identifiers: ADS 423 AB, BD+62 94; CCDM J00313+6320AB; HIC 2460; HIP 2460

Measurements of Double Stars: November 2014 Report

WDS number/Comp	D.C.	P.A.	Sep	Mts	Con	Date
$13288+5956$ CA	S 649	$\mathbf{1 1 0 . 6}$	$\mathbf{1 8 2 . 2}$	$\mathbf{1}$	UMA	$\mathbf{2 0 1 4 . 4 2 2}$
JDSO (Arnold)		110.3	181.7			2013
Tycho -2		110.3	182.1			1991
WDS	262	20		1831		
WDS	111	181.7	11		2012	

Other identifiers: BD+60 1461; CCDM J13286+5956ABC

15511-5503 AB	DUN 193	$\mathbf{1 5 . 3}$	$\mathbf{1 6 . 2}$	$\mathbf{4}$	NOR	$\mathbf{2 0 1 4 . 5 1 5}$
O A G (Duque)		13	16.8			1988
Tycho -2		12.7	16.7			1991
Webb (Argyle)		10.1	15.8		2013	
Webb (Nicholson)		12.4	16.5		1999	
WDS		19	22.5		1836	
WDS	ARY 99	$\mathbf{2 0 . 8}$	$\mathbf{5 0 . 9}$	$\mathbf{4}$		2013
15511-5503 AC		19	50.2	1	2014.515	
WDS		15.8	2013			

Other identifiers: ALS 15016; GSC 08701-00350; HIP 77645; SAO 243044

16057-0617 AC	STF 2005	232.3	30.1	2	OPH	2014.370
WDS		231	20.0			1835
WDS		232	29.0	15		2000
16057-0617 AD	STF 2005	201.5	55.3	2		2014.370
WDS		185	35.0			1835
WDS		200	55.4	10		2000
16057-0617 AE	SHY 696	270.5	260	2		2014.370
WDS		271	259.4			1991
WDS		270	259.4	4		2000
16057-0617 CD	STF 2005	175.8	34.2	2		2014.370
WDS		151	25.4			1835
WDS		174	34.2	9		2000

Other identifiers: ADS 9918 C; BD-05 4324C; CCDM J16057-0617C; CSI-05 4234 2;
GEN +1.00144362C; IDS 16004-0601 C; UBV 13628

$\mathbf{1 7 2 1 1 + 0 1 2 7 \mathrm { AB }}$	STF 2150	$\mathbf{2 1 3 . 6}$	$\mathbf{1 1 . 7}$	$\mathbf{1}$	OPH	$\mathbf{2 0 1 4 . 6 2 5}$
WDS		185	8.1			1832
WDS		213	11.6	25		2013

Other identifiers: AG+01 1959; BD+01 3422; GSC 00400-00165; HIP 84919; SAO 122303;
TD1 20301; TYC 400-165-11; UBV 14791; YZ 12410

Measurements of Double Stars: November 2014 Report

WDS number/Comp	D.C.	P.A.	Sep	MtS	Con	Date
$\mathbf{1 7 3 1 1 + 1 0 2 7 ~ A B ~}$	STF 2176	$\mathbf{1 6 . 8}$	$\mathbf{1 6 . 8}$	$\mathbf{1}$	OPH	$\mathbf{2 0 1 4 . 6 2 5}$
JDSO (Schlimmer)		17.0	16.7			2013
WDS		9	16.9			1829
WDS		17	17.1	24		2004
17311+1027 AC	GUI 19	$\mathbf{7 1 . 4}$	$\mathbf{8 9 . 9}$	$\mathbf{1}$		$\mathbf{2 0 1 4 . 6 2 5}$
Tycho-2		71.2	89.9		1991	
WDS	71	90.5		1908		
WDS	71	89.3	17		2013	

Other identifiers: AG+10 2067; BD+10 3225; GSC 00996-01492; SAO 102878; TYC 996-1492-1

$\mathbf{1 7 3 4 4 + 1 3 1 0 ~ A B}$	STF 2184	$\mathbf{6 5 . 3}$	$\mathbf{2 2 . 7}$	$\mathbf{1}$	OPH	$\mathbf{2 0 1 4 . 6 2 5}$
JDSO (Schlimmer)		65.7	22.7			2010
JDSO (Schlimmer)		64.9	22.8			2012
WDS		82	15.9			1783
WDS		65	23.7	25		2013

Other identifiers: AG+13 1693; BD+13 3397; GSC 01004-00180; HIP 85979; SAO 102925; TYC 1004-180-1; YZ 13 6159

17344+2520 AB	HJ 1300	263.5	12.3	3	HER	2014.608
JDSO (Arnold)		256.9	13.3			2006
WDS		300	8.0			1828
WDS		264	12.2	13		2013
17344+2520 AC	SLV 5	241.3	15.5	3		2014.608
WDS		264	13.9			1897
WDS		241	15.4	13		2013
17344+2520 BC	HJ 1300	192.9	6.2	3		2014.608
WDS		190	2			1828
WDS		193	6.2	9		2002

Other identifiers: ADS 10637; GSC 02079-00082; TYC 2079-82-1; UCAC3 231-130475

$\mathbf{1 8 2 0 9 + 0 3 2 3 ~ A B ~}$	HJ 5495	$\mathbf{2 8 4}$	$\mathbf{2 7 . 5}$	$\mathbf{2}$	OPH	$\mathbf{2 0 1 4 . 6 2 5}$
Webb (Nicholson)		283.9	27.1			2002
WDS		290	18		1827	
WDS		284	27.1	12		2002
18209+0323 AC	HJ 5495	$\mathbf{8 1 . 4}$	$\mathbf{5 7 . 9}$	$\mathbf{2}$		$\mathbf{2 0 1 4 . 6 2 5}$
JDSO (Nicholson)		81.9	58.4		2002	
WDS	80	58		1912		
WDS	82	58.4	6		2002	

Other identifiers: ADS 11271 A; BD+03 3680; GSC 00436-03545; HIP 89918; SAO 123377; TYC 436-3545-1; YZ 36199

Measurements of Double Stars: November 2014 Report

WDS number/Comp	D.C.	P.A.	Sep	Mts	Con	Date
$18289+3515 \mathrm{AB}$	POP 34	$\mathbf{2 . 6}$	$\mathbf{6 . 6}$	$\mathbf{8}$	CYG	$\mathbf{2 0 1 4 . 4 0 5}$
WDS		79	2.9			1969
WDS		4	6.4	19		2011

Other identifiers: BD+34 3568; CCDM J19289+3515AB; IDS 19252+3503

$\mathbf{1 9 4 6 4 + 3 3 4 4 \text { AB }}$	STF 2580	$\mathbf{6 8 . 8}$	$\mathbf{2 6 . 3}$	$\mathbf{4}$	CYG
JDSO (Arnold)		69.0	26.2		2014.405
JDSO (Carro)		68.9	25.5		2010
JDSO (Malwald)		68.2	26.1		2011
JDSO (Schlimmer)		68.1	26.0		2012
WDS	73	25.5		1822	
WDS	70	25.6	73		2006

Other identifiers: 17 CYG; ADS 12913; BD+33 3587; HD 187013; HIP 97295; HR 7534; SAO 68827;
TYC 2660-04227-1

(Continued from page 65)

Carro, J., "Astrometric Measurements of Seven Double Stars: Report of September 2011", JDSO, 8, 40-47, 2011.

Malwald, M., "Double Star Measurements Using a Small Refractor", JDSO, 9, 189-194, 2013.

Nicholson, M., "Astrometric Survey of 250 Double Stars - Paper II", Webb, 2002.

Schlimmer, J., "Double Star Measurements Using a Webcam: Annual Report of 2006", JDSO, 3, 131133, 2007.

Schlimmer, J., "Double Star Measurements Using a Webcam: Annual Report of 2010", JDSO, 7, 233239, 2011.
Schlimmer, J., "Double Star Measurements Using a Webcam: Annual Report of 2012", JDSO, 9, 230246, 2013.

A New Visual Binary System in Auriga

Abdul Ahad
Luton, Bedfordshire, United Kingdom
aa_spaceagent@yahoo.co.uk

Abstract

A new visual binary system is reported in Auriga, currently not listed in the WDS catalog. The components have been determined to be a pair of G-type main sequence stars that lie close to a least squares negative exponential curve, which places the pair at a distance of some 300 to 500 ly from Earth.

Introduction

I had first noticed this pair on the moonless night of September $24^{\text {th }} 2014$ whilst sweeping the star fields surrounding the red-tinted carbon star UU Aurigae. My initial reaction was how aesthetically beautiful this pair had seemed, all so neatly presented in the eyepiece with a small $\Delta \mathrm{m}$ and that the components were not too widely spaced apart. It wasn't until October $21^{\text {st }} 2014$ that I had determined the system was in fact a true CPM binary. That same night of October 21st, once the clouds had shifted, the skies turned out to be pristinely clear with steady seeing conditions and so I set about finding the pair again in my 120 mm refractor. They were easy to spot about 2.9° to the lower left of UU Aurigae, as shown in Figure 1.

I then had the pleasure of making a drawing of the field, and this is shown in Figure 2.

The components of this binary have Tycho 2 designations: TYC 2443-146-1 and TYC 2443-337-1, located in the sky at 2000 ICRS: $063848.17+353629.6$ (J2000.0), and they are of UCAC4 apparent visual magnitudes 10.17 and 11.39 , respectively.

Observations and Analysis

The system was later imaged using the 0.61 meter Cassegrain telescope of the Sierra Stars Observatory Network on November 3, 2014, from which the position angle and separation were deduced for epoch 2014.841:

Figure 1: Location of the new binary south of UU Aurigae

PA: 172.6°
Sep: 15.61"
The UCAC4 catalog [1] revealed the two stars to be sharing virtually identical proper motions, shown in Table 1.

A New Visual Binary System in Auriga

Figure 2: Pencil sketch made with a 120 mm (4.75") refractor at a magnification of x159. The FOV is about 10 arcminutes in radius and the faintest stars are of magnitude 12.

A total proper motion, $\mu=\left(\mu_{\alpha}^{2}+\mu_{\delta}{ }^{2}\right)^{1 / 2}=37.8$ mas yr^{-1} was computed for the pair. Referring back to my earlier work, the use of the inverse correlation between distance and proper motion which I had first postulated in 2011 (Ahad 2011, Webb Society DSSC 19, page 48 , Table 1) to be a predictive tool for gauging astrophysical characteristics of wide double stars, was further expanded over a larger sample of stars and then fine -tuned to both a tabular, as well as a graphical, form. The latter is shown in Figure 3.

Through successive iterations and some trial and error, I derived a least-squares negative exponential to fit the centreline:

$$
y=17941 x^{-1.11}
$$

where x is the distance in light-years and y the total annual proper motion in milliarcseconds. It will be seen from the chart that a total PM of $37.8{\mathrm{mas} \mathrm{yr}^{-1} \text { places }}^{\text {P }}$ this new Auriga binary at a distance range of some 300 to 500 light-years (90 to 150 parsecs) from Earth. The curve in Figure 3 can, in fact, be used as a general reference tool to ascertain a more statistically rigorous distance estimate for both single and multiple stellar systems in cases where trigonometrical parallaxes have either not been determined at all, or have been poorly de-

Table 1: Proper Motion of Components

	$\boldsymbol{\mu}_{\alpha}$ mas $\mathbf{y r}^{-1}$	Error mas $\mathbf{y r}^{-1}$	$\boldsymbol{\mu}_{\delta}$ mas $\mathbf{y r}^{-1}$	Error mas $\mathbf{y r}^{-1}$
Primary	+7.7	± 1.0	-36.9	± 0.9
Companion	+7.8	± 0.8	-37.1	± 1.1

Figure 3: The negative exponential determined by the author to fit a least-squares regression curve, showing statistically significant distance ranges for both the new binary and UU Aurigae.
termined. Whereas trigonometrical parallaxes can be highly uncertain for stellar systems going into great distances exceeding of the order of 1000 light-years or more, it is the author's personal experience that the proper motion errors can often be much more manageable way beyond such distance thresholds. The carbon star UU Aurigae is a good candidate case to illustrate this point. UU Aurigae is in its own right a 'Washington Double Star' (WDS 06365+3827), though not a binary, attended by a wide unrelated companion of magnitude 11.77. Distance estimates for UU Aurigae A tend to be highly uncertain in the literature. Values typically range from 1600 to 1800 light-years, with a ± 800 light-year error margin. The measured parallax of UU Aurigae is 1.80 mas, with a high uncertainty of ± 0.81 mas (45% error), whereas the proper motion of this star is stated as
 5% error). In these circumstances, it would make more sense to use the proper motion to estimate the distance of UU Aurigae rather than its unreliable parallax. Hence, a more reasonable estimate for the distance of UU Aurigae would perhaps be in the 400 to 700 lightyear distance range, as shown by the red dotted line in Figure 3.

From the 2MASS catalog [2] we find J and K magnitudes, color indices (J-K), and likely spectral types [3] for the components of this new CPM binary as shown in Table 2.

Fitting the apparent visual magnitudes of the components of 10.17 and 11.39 to average absolute magnitudes for a pair of G1V + G8V stars in the distance modulus equations, we project spectral distances of 405

A New Visual Binary System in Auriga

Table 2: 2MASS photometry, color indices, and spectral types

	J-mag	K-mag	Color Index (J-K)	Spec Type
Primary	9.157	8.836	+0.32	G1V
Companion	10.229	9.859	+0.37	G8V

ly and 428 ly, respectively, for the A and B components of this Auriga binary. These distances are close enough to one another and fit well within the 300 to 500 ly distance range derived earlier from proper motions, hence the whole scenario proves this to be a visual binary system with gravitationally connected components.

References

[1] The Fourth US Naval Observatory CCD Astrograph
Catalog (UCAC4), Zacharias, et al., 2012.
[2] The Two Micron All-Sky Catalog of Point Sources, Cutri, et al., 2003.
[3] Ahad, A., "A New Common Proper Motion Double
Star in Cetus", JDSO, 8, 332-334, 2012.

Double Star Measurements for 2011 Part 2

Frank Smith
20 Coburn Way, Jaffrey, NH 03452
fhasmith@frankandluann.net

Abstract

I report 65 measurements of binary systems from 2011.772 to 2011.774. The observations were conducted with the T11 robotic telescope located at the iTelescope Observatory, Mayhill, NM, USA . Discussion includes notes on a number of the observed doubles. Information about instrumentation and methodology and results are included.

Introduction and Instrumentation

I have been imaging double stars for a number of years using the equipment at iTelescopes remote observatory.

The program of measuring the visual doubles used the T11 telescope in Mayhill, NM. The instrument is a Planewave 20 in Dall-Kirkham Astrograph with a focal length of approximately 2280 mm . The CCD camera is a FLI ProLine PL11002M with 9 um square pixels. The field of view is 36.2×54.3 arc-mins. The OTA is mounted on a Planewave Ascension 200HR.

The instrument is capable of quickly and accurately slewing to a selected double star. The system takes about one minute to cycle through an exposure and save the resulting image in a FITS format. Taking 5 to 6 exposures per double star allows 6 doubles to be imaged per hour. The relatively short focal length of this system restricts measurements of doubles to pairs > 10 arc-seconds in most cases.

Methods

Imaging was done by entering the coordinates of the double into the robotic telescope's web interface. A test exposure was done and checked for centering and proper exposure. If all was well, an exposure run of 5
to 7 images through a clear filter was done for each pair. Exposures typically ran about $10-15$ seconds for 10-13 magnitude doubles. After the observing session was completed, the images were retrieved from an ftp site provided by the iTelescope observatory.

Each image in the exposure sequence was examined and any trailed or sub-par images were discarded. MOP Canopus (Warner, 2006) was used to reduce the images. Any image for which the software could not reach a plate solution was also discarded. Canopus produces an astrometric solution to the image based on the UCAC2.0 catalog (Zacharias et all.,2004) or the MSOSC catalog (USNO and Tycho data) in areas not covered by UCAC2.0. The software measures double stars using a subroutine built into Canopus. It also produces a great amount of information about the astrometric solution. All images were copied to archival CD -ROM material and are available by request from the author. Each starting and ending image was blinkedjust in case.

Results

Table 1 shows the results for the 65 doubles measured.

Double Star Measurements for 2011 Part 2

Table 1: Measures of Double Stars

WDS ID	Discoverer	PA	SEP	EPOCH	No.	PAsd	SEPsd	Notes
$19293+0223$	J 2176 AB	359.6	31.47	2011.772	4	0.07	0.03	
$19297+2453$	POU3860	75.9	10.21	2011.774	5	0.18	0.04	
$19298+2123$	LDS1023	268.4	227.64	2011.772	5	0.01	0.03	1
19298+0239	BAL1994	297.6	10.52	2011.772	4	0.49	0.08	
19299+2440	POU3862	171.6	16.20	2011.774	5	0.22	0.05	
$19306+2450$	POU3874	80.9	16.83	2011.774	5	0.14	0.02	
$19314+2437$	POU3876	185.0	15.57	2011.774	5	0.11	0.01	
19316+2441	POU3879	37.7	12.67	2011.774	5	0.15	0.03	
$19317+2432$	POU3880	137.0	15.92	2011.774	5	0.09	0.02	
$19319+2420$	POU3882	111.7	11.04	2011.774	5	0.10	0.05	
$19321+2441$	POU3885	208.4	9.64	2011.774	5	0.25	0.06	
$19328+2444$	POU3895	211.0	9.06	2011.774	5	0.49	0.08	
$19329+2443$	POU3897	312.7	16.54	2011.774	5	0.16	0.04	
$19355+3019$	SLE 639	11.0	11.36	2011.772	5	0.14	0.03	
19376+3030	LDS1026	138.3	17.91	2011.772	5	0.08	0.02	
19386+3026	SLE 653	338.3	11.49	2011.772	5	0.19	0.04	
$19537+3442$	SEI 716	110.2	23.18	2011.772	5	0.04	0.03	
$19547+3453$	SEI 723 AB	41.2	12.41	2011.772	5	0.04	0.01	
$19547+3453$	TOB 162 AC	253.4	24.17	2011.772	5	0.07	0.02	2
19557+3443	HLM 33 AB	76.7	11.73	2011.772	5	0.11	0.02	
19557+3443	HLM 33 AC	291.4	14.76	2011.772	5	0.11	0.02	
$19537+3442$	HLM 33 AD	129.7	13.36	2011.772	5	0.10	0.03	
19561+3457	HLM 34	12.6	9.80	2011.772	5	0.13	0.04	
19564+3448	SEI 737	67.5	25.77	2011.772	6	0.10	0.03	
$20041+2347$	POU4198	247.6	18.44	2011.774	5	0.09	0.01	
$20057+2336$	POU4208	169.3	19.18	2011.774	5	0.08	0.03	
$20057+2336$	POU4211	12.8	14.21	2011.774	4	0.18	0.02	
$20065+2338$	POU4216	300.8	13.30	2011.774	5	0.10	0.02	
$20067+2358$	POU4217	210.5	14.36	2011.774	5	0.21	0.02	
$20120+2328$	POU4264	353.0	16.47	2011.774	5	0.14	0.03	
20126+2326	POU4272 AB	31.8	13.56	2011.774	5	0.10	0.05	
$20128+2331$	POU4275	83.0	10.31	2011.774	4	0.25	0.06	
$20130+2346$	POU4278	15.7	11.42	2011.774	5	0.25	0.10	
$20132+2342$	POU4281	348.7	5.53	2011.774	5	0.76	0.40	
$20133+2345$	POU4283	173.1	9.90	2011.774	5	0.24	0.06	
$20135+2325$	POU4284	342.7	14.51	2011.774	6	0.19	0.03	
20136+2334	POU4287	63.3	15.41	2011.774	6	0.15	0.02	
$20137+2333$	POU4288	104.5	14.58	2011.774	3	0.06	0.01	
$20138+2334$	BKO 807 AB	170.9	9.91	2011.774	4	0.22	0.03	
$20138+2340$	POU4289	80.0	8.84	2011.774	6	0.25	0.08	3
$20140+2335$	POU4292	348.4	12.00	2011.774	4	0.13	0.06	
$20142+2340$	POU4294	155.1	13.11	2011.774	5	0.21	0.05	
20143+2328	POU4296	80.6	15.41	2011.774	5	0.10	0.03	

Table concludes on next page.

Double Star Measurements for 2011 Part 2

Table 1 (conclusion): Measures of Double Stars

WDS ID	Discoverer	PA	SEP	EPOCH	No.	PAsd	SEPsd	Notes
$20143+2343$	POU4297	296.3	13.64	2011.774	5	0.13	0.01	
$20309+2339$	POU4545	254.0	11.81	2011.774	5	0.31	0.06	
$20310+2323$	POU4548	8.0	14.18	2011.774	5	0.11	0.04	
$20313+2330$	POU4556	335.3	7.10	2011.774	5	0.36	0.14	
$20315+2336$	POU4560	343.6	10.19	2011.774	5	0.28	0.06	
$20326+2325$	POU4594	214.8	18.97	2011.774	5	0.09	0.03	
$20327+2327$	POU4602	11.5	8.31	2011.774	5	0.24	0.12	
$20322+2330$	POU4622	349.4	8.52	2011.774	6	0.31	0.09	
$20322+2335$	POU4625	42.4	10.39	2011.774	5	0.21	0.04	
$20333+2341$	POU4633	177.4	11.56	2011.774	5	0.17	0.08	
$20337+2316$	POU4647	206.8	11.09	2011.774	5	0.30	0.04	
$20338+2329$	POU4651	226.9	22.30	2011.774	5	0.14	0.02	
$20340+2330$	POU4654	154.0	15.76	2011.774	5	0.11	0.04	
$21586+0931$	HJ 3077	36.0	35.63	2011.772	5	0.05	0.02	
$22306+3706$	HJ 1774 AB	53.0	15.94	2011.772	5	0.10	0.04	
$22306+3706$	HJ 1774 AB	322.0	29.15	2011.772	4	0.13	0.04	
$22308+3708$	ALI 456	212.2	14.66	2011.772	5	0.09	0.05	
$22322+3659$	LDS1057	353.8	57.83	2011.772	5	0.02	0.03	
$22441+4029$	LDS1064	270.8	18.84	2011.772	5	0.09	0.03	4

Table 1 Notes:

1. LDS 1023. This seems to be a cpm pair. "A" is TYC 1613 561, proper motion PA -64 dec -130. "B" is TYC 1613520 , proper motion PA -57 dec -128 .
2. TOB 162 BC. This seems to be a cpm pair. "B" TYC 2677 967, proper motion, PA - 62 dec -43 . "C" is 4UC625-087839, proper motion PA -60.9 dec -39.8.
3. POU 4289. "B" star is much brighter in CCD image. POU stars are often reversed in visual and CCD brightness as the original plates were blue sensitive. "A" star is 2MASS 20134816+2340206 listed mag is 12.384 . " B " star is 2MASS $20134881+2340221$ listed mag is 10.262 .
4. LDS 1064. This seems to be a cpm pair. " A " is TYC 3218905 proper motion PA -75 dec -119 . " B " is TYC 3218907 proper motion RA -74 dec -121 .

Acknowledgments

As usual, "thanks" to B. Mason and W. Hartkopf for being willing to work with amateurs and for answering numerous data requests. Special "thanks' to my sister Gail Smith for proofreading this article.

This research has made use of the Washington Double Star Catalog maintained at the U.S. Naval Observatory.

This research made use of the VizieR Catalog Access Tool, CDS, Strasbourg, France. The original description of the VizieR service was published in A\&AS 143,2.

References

Hog, E., (2000) "The Tycho-2 catalogue: Positions, proper motions and two-color photometry of the
2.5 million brightest stars", Copenhagen, Denmark: Copenhagen University Observatory.
iTelescopes. http://www.itelescope.net/
Mason, B.D., 2006, "Requested double star data from the US Naval Observatory". JDSO, 2, 21-35
UCAC2 Catalog (Zacharias, 2004), "The second U.S. Naval Observatory CCD Astrograph Catalog (UCAC2)", AJ, 127, 3043-3059.

Warner,Brian, 2006, MPO Canopus, http:// www.minorplanetobserver.com/MPOSoftware/ MPOCanopus.htm

A New Double Star in Cepheus

T. V. Bryant III
Little Tycho Observatory
703 McNeill Road, Silver Spring, Md 20910
rkk_529@hotmail.com
Reprinted from http://mainsequence.org/html/wds/tvb7/tvb_7.html

Abstract

A new double star has been found in Cepheus, at 21:55:22.8 +65:01:40.8, J2000. A measurement made with the Aladin tool ${ }^{1}$ of the new double gives 15.6 arc seconds of separation and a position angle of 27°. The APASS ${ }^{2}$ visual magnitudes, as reported by the UCAC4 ${ }^{3}$ are 11.1 and 11.35. Historical data from the stars are listed, as are distance estimates to the pair.

A new double star has been found in Cepheus at R.A. $=21: 55: 22.8$, dec. $=+65: 01: 40.8$, J2000.The pair was found while observing STT 457, WDS ID: $21555+6519$. Using the Aladin tool, UCAC4 listed the proper motions (in milliarcseconds per year) of the pair as:

Primary pmRA: -0.5, pmDec: -5.8 .
Secondary pmRa: -0.8 , pmDec: -8.2.
This was reported to William Hartkopf ${ }^{4}$ of the USNO^{5}, who has included it in the WDS^{6} as TVB 7.

The primary's UCAC4 id is 569-000007, and the secondary's UCAC4 id is $569-000094$.

Dr. Hartkopf researched the new pair and emailed me his results:
"I extracted Tycho ${ }^{7}$, UCAC4, and 2 MASS 9 measures, as well as two photographic measures from 1895 and 1903-so 5 astrometry measures spanning over a century, plus 5 additional photometry measures."

These results are shown in Table 1. Column headings in the table are defined as follows:

- Date is the date of the observation.
- Rho is the separation angle, in arc seconds.
- Errors in rho are also in arc seconds.
- Theta is the position angle, in degrees.
- Errors in theta are also in degrees.
- A mag is the magnitude of the primary.
- B mag is the magnitude of the secondary.
- FEW: Filter effective wavelength, in nanometers.
- FWHM: Full width at half maximum, in nanometers.
- Note: A "B" designates a blue magnitude,
where the filter information was not accurately known.
- Aperture: Telescope aperture, in meters.
- Obs ct: Number of observations used to generate the data.
- Sources (With publication year appended):
- WFC: From the Washington Fundamental Catalog ${ }^{10}$
- TYC: From the Tycho catalog.
- TMA: From the 2MASS catalog.
- Type: The observation's data type.
- Pa: Photographic technique with an astrograph.
- Ht: Tycho data from the Hipparcos satellite.
- E2: 2MASS data.
- Eu: UCAC data.

Based on the Wikipedia H-R diagram ${ }^{9}$ and UCAC4 blue and visual magnitudes, the primary appears to have a spectral class of A8, and the secondary F9. Assuming these stars to be main sequence dwarves, this gives them approximate absolute magnitudes of +4 and +6 . Using the well known distance modulus equation:

$$
M-m=5\left(\log _{10}(d)\right)-5
$$

where M is the absolute magnitude, m the apparent magnitude, and d is the distance in parsecs. Solving for d gives:

$$
d=10^{(m-M+5) / 5)} .
$$

Distances of 250 and 120 parsecs result from the abso-

A New Double Star in Cepheus

Table 1. Historic Measurements of the New Double Star Extracted by W. Hartkopf

Date	Rho	Error in rho	Theta	Error in theta	A mag	$\begin{gathered} \text { Error } \\ \text { in A } \\ \text { mag } \end{gathered}$	B mag	$\begin{gathered} \text { Error } \\ \text { in B } \\ \text { mag } \end{gathered}$	FEW	FWHM	Aperture	Obs ct	Source	Type
1895.88	23.9	-	15.857	-	-	-	-	-	-	B	0.3	1	$\begin{gathered} \text { WFC199 } \\ 8 \end{gathered}$	Pa
1903.73	26.7	-	15.780	-	-	-	-	-	-	B	0.3	1	$\begin{gathered} \text { WFC199 } \\ 8 \end{gathered}$	Pa
1991.66	26.8	-	15.908	-	11.096	0.077	11.353	0.093	530	100	1.4	1	$\begin{gathered} \text { TY- } \\ \text { C2000b } \end{gathered}$	Ht
1991.66	-	-	-	-	11.526	0.072	12.130	0.136	430	90	1.4	1	$\begin{gathered} \text { TY- } \\ \text { C2000b } \end{gathered}$	Ht
1999.74	27.1	-	15.71	-	10.062	0.026	10.413	0.026	1256	245	1.3	1	$\begin{array}{\|c} \text { TMA200 } \\ 3 \end{array}$	E2
1999.74	-	-	-	-	9.822	0.030	0.174	0.028	1633	160	1.3	1	$\begin{array}{\|c} \text { TMA200 } \\ 3 \end{array}$	E2
1999.74	-	-	-	-	9.795	0.021	0.157	0.019	2210	300	1.3	1	$\begin{gathered} \text { TMA200 } \\ 3 \\ \hline \end{gathered}$	E2
2003.702	27.0	0.1	15.746	0.029	10.95	0.03	11.33	0.05	609	70	0.2	4	$\begin{gathered} \mathrm{UC} \\ \overline{3} \mathrm{a} \end{gathered}$	Eu

lute magnitudes of +4 and +6 , respectively. If they are both subgiants, however, the absolute magnitudes are both close to +3 , giving a distance of about 400 parsecs.

Figure 1 is a photo of the new binary from the DSS as rendered by the Aladin Sky Atlas tool.

Note that the proper motions associated with these stars are fairly small, although rho and theta have shown little change from when the pair was first measured. It is hoped that observations from the recent Gaia mission and other subsequent measurements will establish that this pair, and many like it, are physical.

Acknowledgements

The author wishes to acknowledge the editorial assistance of William Hartkopf, Tom Corbin, and Kathleen Bryant in making this short paper more readable.

References

1) Aladin web site, http://aladin.u-strasbg.fr/
2) AAVSO APASS web site, http://www.aavso.org/ apass
3) The Fourth US Naval Observatory CCD Astrograph Catalog (UCAC4), Zacharias, et al, 2012, http:// www.usno.navy.mil/USNO/astrometry/optical-IRprod/ucac
4) William Hartkopf, Astrometry Department, U.S. Naval Observatory 3450 Massachusetts Ave, NW, Washington, DC 20392
5) USNO web site, http://www.usno.navy.mil/USNO/
6) Brian D. Mason, Gary L. Wycoff, William I. Hartkopf, Geoffrey G. Douglass, and Charles E.

Figure 1. DSS image of the new double star.

Worley, 2001. The Washington Double Star Catalog, http://ad.usno.navy.mil/wds/
7) Tycho-2 web site, http://www.astro.ku.dk/~erik/ Tycho-2/
8) 2MASS web site, http://ww.ipac.caltech.edu/2mass/
9) Wikipedia H-R diagram, http:// upload.wikimedia.org/wikipedia/commons/6/6b/ HRDiagram.png
10) USNO catalog listing for the Washington Fundamental Catalog, http://www.usno.navy.mil/USNO/ astrometry/information/catalog-info

A New Visual Binary System in Aquarius

Abdul Ahad
Luton, Bedfordshire, United Kingdom
aa_spaceagent@yahoo.co.uk

Abstract

In this paper, a new common proper motion pair is reported in Aquarius, currently not listed in the WDS catalog. From a combination of B, V, J, and K-band photometry, proper motion, and radial velocity observations, the components are shown to be part of a gravitationally connected binary system.

Introduction

A DSS image of this pair, located at ICRS: 2059 15.95, -08 1157.6 (J2000.0), is shown in Figure 1.

The primary bears the designations HD199726 and BD-08 5534, and is of V-mag 9.78. The secondary is of an estimated V-mag of ~ 11.8. The pair was visually sighted and sketched with a Skywatcher Evostar 120 mm refractor at $00: 25$ UT on August 1, 2014 as

Figure 1: Digitized sky survey image of the new binary in Aquarius
shown in Figure 2.
It must be stressed, however, the faint companion was only just barely glimpsed through dark adapted

Figure 2: The new binary visually sketched at a magnification of $x 159$.

A New Visual Binary System in Aquarius

Table 1: Proper Motions and Radial Velocities of the Components

	μ_{α} $\mathrm{mas} \mathrm{yr}^{-1}$	Error $\mathrm{mas} \mathrm{yr}^{-1}$	μ_{δ} $\mathrm{mas} \mathrm{yr}^{-1}$	Error $\mathrm{mas} \mathrm{yr}^{-1}$	Radial Velocity $\mathrm{km} \mathrm{sec}^{-1}$	Error $\mathrm{km} \mathrm{sec}^{-1}$
Primary	+15.7	± 1.6	+2.5	± 3.4	+7.98	± 1.8
Companion	+16.7	± 1.6	+0.0	± 1.9	+6.66	± 1.9

eyes and using averted vision. The system was later imaged to a greater resolution using the 0.61 -meter Cassegrain telescope of the Sierra Stars Observatory Network[1] on 2014 September $4^{\text {th }}$, which enabled approximate measurements to be taken:

Position Angle: 161.1°
Separation: 10.58"

Proper Motions and Radial Velocities

As mentioned in earlier papers[2], the components of a dynamically associated binary system would, in addition to displaying common proper motions, be expected to have very similar radial velocities. The primary in this Aquarius pair has a measured radial velocity of $+7.98 \mathrm{~km} / \mathrm{sec}$. Radial velocities of stars as faint as this are generally not so abundantly available, however. In recent years, efforts have been initiated to extend radial velocity measurements across broader regions of the sky and going down to fainter limiting magnitudes.

The Radial Velocity Experiment (RAVE)[3], in particular, is a multi-fiber spectroscopic astronomical survey of stars in the Milky Way using the 1.2 -meter UK Schmidt Telescope of the Anglo-Australian Observatory (AAO). From this survey, it has been possible to obtain a radial velocity measurement of the faint companion in this new Aquarius pair. This, along with UCAC4 [4] proper motions for both stars are summarized in Table 1.

We note that the PM vectors and radial velocities of both components are closely aligned, considering the small error margins in each. This is strongly indicative of a binary association between the two stars.

From Table 1, a total proper motion, μ, of 16.3 mas yr^{-1} was computed for the pair, suggesting a distance in the region of about 400 to 700 ly from Earth [5].

Photometry and Distance Calibration

A summary of photometric data, taken from the UCAC4 and 2MASS[6] catalogs, along with spectral classifications are shown in Table 2.

We note that the primary component already has a spectroscopically determined classification of F8V in the catalogs. The K0V classification for the secondary has been determined in this paper as follows: the "K0" part is derived from its 2MASS (J-K) color index of $+0.39[7]$ and the "V" part (main-sequence dwarf) from its apparent visual brightness and estimated distance in the region of 400 to 700 ly , inferred from proper motions ${ }^{5}$. This K0V classification for the secondary is consistent in relation to the primary's already known F 8 V classification, considering that the two stars have a $\Delta \mathrm{m}$ of 2.0 and share very similar PMs. Now F8V stars generally tend to be of absolute magnitudes of around 4.0 and K 0 V stars are generally of absolute magnitudes around 5.9[8]. Projecting spectral distances of both components on these assumptions using the distance modulus, we arrive at distances of 467 ly and 494 ly from Earth, respectively, for the A and B components.

These distances are close enough to one another and fit comfortably within the 400 to 700 ly distance range projected earlier from proper motions, again suggesting a true binary system.

Conclusions

On consideration of the astrophysical parameters of this pair discussed in this paper, and the manner in which they all fit together, we conclude that this is a proven gravitationally-connected binary system.

References

1. Sierra Stars Observatory Network (SSON), website: http://www.sierrastars.com

Table 2: B, V, J, and K-band Photometry and Spectral Types

	B	V	J	K	Color Index $(\mathrm{B}-\mathrm{V})$	Color Index $(\mathrm{J}-\mathrm{K})$	Spec Type
Primary	10.202	9.778	9.046	8.824	+0.42	+0.22	F 8 V
Companion	\ldots	~ 11.8	10.643	10.250	\ldots	+0.39	K 0 V

A New Visual Binary System in Aquarius

2. Ahad, A., "A New Common Proper Motion Pair in Sextans", Journal of Double Star Observations, 8, 247-248, 2012.
3. The Radial Velocity Experiment, website: http:// www.rave-survey.org/
4. The Fourth US Naval Observatory CCD Astrograph Catalog (UCAC4) Zacharias, N. et al, 2013 AJ 145, 44.
5. Ahad, A., Webb Society Double Star Section Circular, 19, 48, 2011.
6. The Two Micron All-Sky Catalog of Point Sources, Cutri, et al, 2003, website: http:// pegasus.phast.umass.edu/
7. Ahad, A., "A New Common Proper Motion Double Star in Cetus", Journal of Double Star Observations, 8, 332-334, 2012.
8. Allen's Astrophysical Quantities, 4th edition, Cox, Arthur N. (editor), Springer, New York, 2000.

Double Star Measurements at the Southern Sky with a 50 cm Reflector and a Fast CCD Camera in 2014

Rainer Anton
Altenholz/Kiel, Germany
e-mail: rainer.anton"at"ki.comcity.de

Abstract

A Ritchey-Chrétien reflector with 50 cm aperture was used in Namibia for recordings of double stars with a fast CCD camera and a notebook computer. From superposition of "lucky images", measurements of 91 pairings in 79 double and multiple systems were obtained and compared with literature data. Occasional deviations are discussed. Some images of noteworthy systems are also presented.

Introduction

As in earlier work, the technique of "lucky imaging" was applied to reduce seeing effects in recordings of double star images by using short exposure times. With only the best frames being registered and stacked, the resolution can approach the theoretical limit of the telescope, and the accuracy of position measurements can even be better than this by about one order of magnitude. More details of the technique are, for example, described in reference [1]. In this paper, measurements on double and multiple systems, made in March/April 2014 in Namibia, are reported. Some are well documented in the literature, such that extrapolations are reasonable and can be used for calibration. For many others, however, only few data exist, and often with large scatter. The present results may help to improve the statistics.

Instrumental

Recordings were made with a 50 cm telescope of Ritchey-Chrétien type (Alluna, Germany) at the Internationale Amateur-Sternwarte (IAS) in Namibia, which I had already used in 2012 [2, 3]. The focal length is 4.1 m . Imaging was done with a b / w-CCD camera of type "Chameleon" (Point Grey). Its small pixel size of 3.75 $\mu \mathrm{m}$ square results in a nominal resolution of 0.19 arcseconds per pixel. This was about halved with a Barlow lens, with only one exception (Acrux). A more ex-
act scaling factor was obtained with calibration stars (see Table 1 and discussion below).

Recordings were made with red or near-infrared filters to reduce seeing effects and the atmospheric spectrum, and especially when using the Barlow lens, to reduce chromatic aberration. Exposure times were varied between 0.1 msec and 350 msec , depending on the brightness and on the seeing conditions. The best frames, typically several tens up to more than one hundred, were later selected and stacked, as described earlier.

Position angles were obtained as usual by recording trails in an east-west direction, while the telescope drive was temporarily switched off.

Results

All measurements are listed in Table 1, which is followed by individual notes. Numbering of the notes (last column at right) is with R.A. values. Names, position, and magnitude data are adopted from the WDS [4]. N is the total number of recordings. Shaded lines denote systems which were used for calibration of the image scale (see below). The residuals, delta P.A. and delta rho, refer to the trends of literature data, if sufficiently available, or for binaries, to the currently assumed ephemeris, if not otherwise stated. Main sources are the Fourth Catalog of Interferometric Measurements of Binary Stars ("speckle catalog") [5], and the Sixth

Double Star Measurements at the Southern Sky with a 50 cm Reflector ...

Table 1: List of measurements. Systems used for calibration of the image scale are marked by shaded lines. Position angles (P.A.) are in degrees, separations (rho) in arcseconds. N is the number of different recordings. Residuals delta P.A. and/or delta rho are given, when extrapolations of literature data appear reasonable. Notes with asterisks refer to figures shown below.

PAIR	RA + DEC	MAGS	P.A. meas.	ρ meas .	DATE	N	$\Delta \mathrm{P} . \mathrm{A}$.	$\Delta \mathrm{rho}$	NOTES
STT 517 AB	$0513.5+0158$	6.796 .99	243.1	0.69	2014.243	1	1.6	0.01	05135
STF 668 A, BC	$0514.5-0812$	0.36 .8	202.0	9.52	2014.243	2	-	-	05145
DUN 23	$0604.8-4828$	7.307 .69	127.1	2.59	2014.248	1	0.2	-0.01	06048
$\mathrm{R} \quad 65 \mathrm{AB}$	06 29.8-50 14	5.976 .15	256.9	0.46	2014.248	1	0.8	-0.01	06298
DUN 30 AC		5.977 .98	311.1	12.03	2014.248	1	-	-	
HDO 195 CD		7.988 .73	184.2	0.37	2014.248	1	4.2	-0.02	
DUN 32	$\begin{array}{lllll}06 & 42.3-3824\end{array}$	6.597 .73	277.1	7.95	2014.249	1	0.1	0.02	06423
HU 112	$0701.8-1118$	7.037 .70	197.3	0.62	2014.249	2	-1.3	-0.01	07018
I 7	$0717.5-4659$	7.108 .35	202.0	0.68	2014.246	2	-0.8	-0.01	07175
STF1104 AB	$\begin{array}{lllll}07 & 29.4 & -1500\end{array}$	6.397 .60	36.3	1.79	2014.246	2	-0.7	-0.02	07294
HU 710	$\begin{array}{lllll}07 & 43.0 & -17 & 04\end{array}$	7.007 .95	62.7	0.48	2014.243	1	0.7	0.01	07430
STF1146	$0747.9-1212$	5.737 .32	341.0	1.07	2014.244	1	0.3	-0.03	07479
HJ 4087	$08 \quad 22.1-4069$	7.587 .98	254.4	1.47	2014.247	1	1.0	0.02	08221
SLR 8	$\begin{array}{llllll}08 & 32.1 & -5313\end{array}$	6.137 .08	281.3	0.81	2014.255	1	0	0.01	08321*
BU 205	$\begin{array}{lllll}08 & 33.1 & -24 & 36\end{array}$	7.146 .84	290.2	0.54	2014.247	1	2.8	-0.05	08331*
BU 208	$\begin{array}{lllll}08 & 39.1 & -22 & 40\end{array}$	5.376 .81	41.8	0.91	2014.247	1	-6.5	+0.18	08391*
I 314	$\begin{array}{lllll}08 & 39.4 & -36 & 36\end{array}$	$6.4 \quad 7.9$	242.6	0.82	2014.248	2	0.4	0.02	08394
HJ 4188 AB	$\begin{array}{lllll}09 & 12.5 & -43 & 37\end{array}$	5.966 .76	281.0	2.88	2014.255	1	0.5	0	09125
COP 1	$0930.7-4028$	3.915 .12	115.2	0.99	2014.251	2	-2.6	-0.10	09307*
R 123	$0933.3-57 \quad 58$	7.507 .61	32.7	1.87	2014.256	1	-0.5	-0.01	09333
SEE 115	$0937.2-5340$	6.126 .28	9.9	0.68	2014.255	1	0	-0.03	09372
HRG 47	$\begin{array}{lllll}10 & 03.6 & -6153\end{array}$	6.347 .93	353.4	1.14	2014.256	1	0.9	-0.02	10036
I 173	$10 \quad 06.2-4722$	5.327 .10	9.3	0.96	2014.251	2	0.6	-0.01	10062*
DUN 89 AB	$10 \quad 33.3-55 \quad 23$	6.797 .76	31.0	25.93	2014.256	1	-	-	10333
HLD 106 BC		7.768 .14	255.1	1.41	2014.256	1	-	-	
BU 411	$\begin{array}{lllll}10 & 36.1 & -2641\end{array}$	$6.68 \quad 7.77$	305.5	1.33	2014.247	1	0.3	0	10361
SEE 119	$\begin{array}{llllll}10 & 37.3 & -48 & 14\end{array}$	$4.13 \quad 5.76$	259.8	0.46	2014.251	2	2.8	0.03	10373*
R $\quad 155 \mu \mathrm{Vel}$	$1046.8-4925$	2.825 .65	56.8	2.32	2014.250	2	0.7	-0.04	10468
HJ 4383	$\begin{array}{lllll}10 & 53.7 & -70 & 43\end{array}$	6.387 .09	288.6	1.55	2014.256	1	0	0.04	10537
HJ 4432	$\begin{array}{lllll}11 & 23.4 & -6457\end{array}$	5.376 .56	309.8	2.53	2014.256	1	-	-	11234
BSO 5	$\begin{array}{lllll}11 & 24.7 & -61 & 39\end{array}$	7.688 .76	248.3	7.49	2014.245	1	0.4	0.02	11247
I $885 \mathrm{Aa}, \mathrm{Ab}$		7.989 .90	146.3	0.58	2014.245	1	5.1	0.06	11286
HJ 4455 AB	$\begin{array}{lllll}11 & 36.6 & -33 & 34\end{array}$	6.017 .77	241.1	3.49	2014.256	1	-	-	11366
HLD 114	$1155.0-5606$	7.367 .81	169.2	3.82	2014.245	1	1.1	0.74	11550
SEE 143	$\begin{array}{llll}12 & 03.6-3901\end{array}$	7.057 .65	25.0	0.49	2014.248	2	0.7	0.01	12036*
DUN 117 AB	$1204.8-6200$	7.407 .83	149.4	23.56	2014.232	2	-	-	12048*
DUN 117 AC		7.4010 .0	18.5	25.67	2014.232	2	-	-	
DUN 117 AX		7.40 13?	115.5	3.24	2014.232	1	-	-	
BU 920	$\begin{array}{lllll}12 & 15.8 & -23 & 21\end{array}$	6.868 .22	306.3	1.91	2014.244	1	-0.7	0.01	12158
BSO 8	$\begin{array}{llll}12 & 24.9 & -58 & 07\end{array}$	7.847 .98	334.5	5.42	2014.232	1	-	-	12249

Table 1 continues on next page.

Double Star Measurements at the Southern Sky with a 50 cm Reflector ...

Table 1 (continued): List of measurements. Systems used for calibration of the image scale are marked by shaded lines. Position angles (P.A.) are in degrees, separations (rho) in arcseconds. N is the number of different recordings. Residuals delta P.A. and/or delta rho are given, when extrapolations of literature data appear reasonable. Notes with asterisks refer to figures shown below.

PAIR	RA + DEC	MAGS	P.A. meas.	ρ meas.	DATE	N	$\Delta \mathrm{P} . \mathrm{A}$.	$\Delta \mathrm{rho}$	NOTES
BU 606	12 26.0-14 57	7.429 .39	289.3	0.54	2014.244	1	1.0	-0.03	12260
DUN 252 AB	12 26.6-63 061	1.251 .55	112.3	4.00	2014.232	1	-	-	12266
DUN 252 AC		1.254 .80	202.0	91.8	2014.240	2	-	-	
ANT 1 AG		1.2510 ?	145.3	58.7	2014.268	2	-	-	
CPO $12 \mathrm{~A}, \mathrm{BC}$	$\begin{array}{llll}12 & 28.3 & -6146\end{array}$	7.328 .24	187.6	2.08	2014.240	1	-1.2	-0.03	12283
R 207	12 46.3-68 07	3.523 .98	51.4	0.98	2014.237	3	-6.4	0.08	12463
I 83	$\begin{array}{lllll}12 & 56.7 & -47 & 41\end{array}$	7.397 .68	235.6	0.85	2014.248	2	0.3	-0.01	12567
BU 341	$\begin{array}{llll}13 & 03.8 & -20 & 35\end{array}$	6.256 .51	131.7	0.47	2014.246	2	-0.3	0.01	13038
I 917	$\begin{array}{llll}13 & 06.6-4602\end{array}$	8.138 .37	277.5	1.39	2014.251	1	1.5	0.03	13066
R 213	$\begin{array}{llll}13 & 07.4 & -59 & 52\end{array}$	6.597 .04	21.5	0.66	2014.251	1	0	-0.01	13074
RST3829	$\begin{array}{lllll}13 & 14.9 & -11 & 22\end{array}$	7.359 .14	154.8	0.53	2014.246	2	-1.2	-0.03	13149
I 298	$\begin{array}{llll}13 & 32.5 & -69 & 14\end{array}$	7.368 .54	150.5	0.53	2014.245	1	-1.8	-0.03	13325
HWE 95 AB	$\begin{array}{lllll}13 & 43.8 & -40 & 11\end{array}$	7.517 .85	185.1	0.89	2014.256	1	0	-0.03	13438
BU 343	$\begin{array}{llll}13 & 52.0 & -31 & 37\end{array}$	6.268 .91	202.4	0.66	2014.246	2	1.7	-0.03	13520
HWE 28 AB	$\begin{array}{llll}13 & 53.5 & -35 & 40\end{array}$	6.276 .38	314.2	1.00	2014.242	3	0.3	0.06	13535*
SLR 19	$\begin{array}{lllll}14 & 07.7 & -49 & 52\end{array}$	7.147 .38	326.7	1.12	2014.243	3	-0.1	-0.03	14077
HJ 4672	$\begin{array}{llll}14 & 20.2 & -43 & 04\end{array}$	5.777 .94	300.8	3.46	2014.256	1	0	0.05	14202
RHD 1 AB	$\begin{array}{lllll}14 & 39.6 & -60 & 50\end{array}$	0.141 .24	279.2	4.33	2014.241	5	0.2	-0.01	14396
NZO 52	14 40.8-66 57	7.878 .54	59.5	2.21	2014.256	1	-	-	14408
HJ 4707	$1454.2-6625$	7.538 .09	271.2	1.13	2014.245	1	0.1	-0.03	14542
I 227 AB	$\begin{array}{llll}14 & 56.5 & -34 & 38\end{array}$	8.068 .39	99.6	0.44	2014.251	1	0.5	0.01	14565a
HJ 4715	$1456.5-4753$	5.986 .82	277.9	2.08	2014.256	1	0	0.01	14565b
HN 28 AB	$1457.5-2125$	5.888 .18	306.4	25.69	2014.253	2	-0.4	0.01	14575
BU 239	$1458.7-27 \quad 39$	$6.17 \quad 6.79$	12.4	0.47	2014.248	1	-0.8	0	14587*
HJ 4728 AB	$1505.1-4703$	4.564 .60	64.4	1.64	2014.256	1	0	-0.03	15051
I 228	$1514.0-4348$	7.988 .24	12.0	1.34	2014.269	1	0	0.01	15140
STF3091 AB	$\begin{array}{lllll}15 & 16.0 & -0454\end{array}$	7.748 .48	228.5	0.51	2014.256	1	3.1	-0.03	15160
BU 227 AB		7.538 .64	158.9	1.82	2014.249	1	0	-0.01	
HJ 4757	$\begin{array}{lllll}15 & 23.4 & -59 & 19\end{array}$	4.945 .73	179.4	0.79	2014.250	2	2.1	-0.03	15234
CPO 16 AB	$\begin{array}{lllll}15 & 29.5 & -58 & 21\end{array}$	7.037 .98	33.9	2.48	2014.269	1	0	0.04	15295
B 2036 AB	$\begin{array}{lllll}15 & 31.3 & -33 & 49\end{array}$	7.77 .9	1.6	0.38	2014.250	2	0.5	0	15313*
HWE 78 AC	$\begin{array}{lllll}15 & 31.3 & -33 & 49\end{array}$	7.79 .11	119.7	1.46	2014.250	2	0	-0.01	15313*
HJ 4786 AB	$\begin{array}{lllll}15 & 35.1 & -41 & 10\end{array}$	2.954 .45	275.9	0.83	2014.242	2	-0.7	0	15351*
BU 36	15 53.6-25 20	4.696 .98	267.8	1.98	2014.269	1	0	0.01	15536
I 977	15 55.7-26 45	7.998 .48	256.3	0.52	2014.250	1	-1.0	-0.02	15557
PZ 4	15 56.9-33 58	5.095 .56	49.3	10.18	2014.233	1	0	0.03	15569
SEE 258 AB	$\begin{array}{llll} 16 & 03.5 & -57 & 47 \end{array}$	5.205 .76	190.0	0.26	2014.233	1	-0.4	-0.01	16035*
HJ 4825 AB, C		4.648 .02	242.1	11.04	2014.233	1	0.3	-0.01	
HWE 82	$\begin{array}{llll}16 & 03.8 & -33 & 04\end{array}$	7.717 .86	344.7	2.31	2014.269	1	-	-	16038
STF1998 AB	$1604.4-1122$	5.164 .87	3.0	1.05	2014.252	2	0.3	0	16044
STF1998 AC		5.167 .30	42.0	7.97	2014.252	2	-1.8	0.43	

Table 1 concludes on next page.

Double Star Measurements at the Southern Sky with a 50 cm Reflector ...

Table 1 (conclusion): List of measurements. Systems used for calibration of the image scale are marked by shaded lines. Position angles (P.A.) are in degrees, separations (rho) in arcseconds. N is the number of different recordings. Residuals delta P.A. and/or delta rho are given, when extrapolations of literature data appear reasonable. Notes with asterisks refer to figures shown below.

PAIR	RA + DEC	MAGS	P.A. meas.	r meas.	DATE	N	DP.A.	Drho	NOTES
BU 120 AB	$1612.0-1928$	$4.35 \quad 5.31$	2.0	1.32	2014.251	1	0	-0.01	16120
MTL 2 CD		6.607 .23	55.5	2.38	2014.251	1	0	0.04	
H 566 AC		4.356 .60	335.6	41.58	2014.251	1	-	-	
GNT 1 AB	$1629.4-2626$	0.965 .4	276.6	2.57	2014.251	1	-0.4	-0.03	16294
R 283	$\begin{array}{lllll}16 & 42.5 & -37 & 05\end{array}$	6.987 .83	246.9	0.81	2014.251	2	1.6	0	16425
BU 1118 AB	$17 \quad 10.4-1544$	3.053 .27	232.3	0.55	2014.250	1	0	-0.02	17104
SHJ 243 AB	$17 \quad 15.3-2636$	$5.12 \quad 5.12$	141.1	5.06	2014.251	1	0	0.05	17153
MLO 4	$\begin{array}{lllll}17 & 19.0 & -34 & 59\end{array}$	6.377 .38	152.5	1.23	2014.251	1	-0.9	0.04	17190
HDO 275	$17 \quad 44.3-72 \quad 13$	6.858 .11	76.5	0.68	2014.251	1	0	-0.04	17443
HJ 5014	$\begin{array}{llll}18 & 06.8 & -43 & 25\end{array}$	$5.65 \quad 5.68$	1.8	1.78	2014.233	1	-0.6	0.02	18068

Table Notes:

Terms "cpm" (common proper motion) and "relfix" (relatively fixed) refer to Burnham [7].
Asterisks in column "notes" refer to figures shown below.
05135: in Orion, binary, $P=312 y$, many speckle data.
05145: β Orionis, "Rigel", measurement difficult, because of large difference in brightness of the components, large scatter of literature data, residuals ambiguous, rho seems to slowly increase.
05308: 32 Orionis, binary in doubt, $P=586$ y ?, "motion about rectilinear", many speckle data.
06048: in Puppis, binary, $P=464$ y.
06298: in Puppis, two binaries, $A B: P=52.9 \mathrm{y}$, many speckle data, CD: $P=101$ y. Few data for $A B-C D$, residuals ambiguous.
06423: in Puppis, few data, residuals refer to last entry in speckle catalog from 1991.
07018: in Canis major, few data with some scatter, PA increasing.
07175: in Puppis, binary, $P=82 y$, large excentricity, many speckle data.
07294: in Puppis, binary, $\mathrm{P}=729$ y ?, "premature orbit".
07430: in Puppis, binary, $P=138$ y, many recent speckle data.
07479: in Puppis, binary, $P=1332$ y ?, own measure follows recent speckle data, being close to the re-
cently revised orbit (which much longer period than previously assumed).
08221: in Puppis, binary, $P=880$ y ?, few data, only small portion of orbit documented.
08321: in Vela, few data, PA decreasing, rho about constant at least since decades. See fig. 3.
08331: in Pyxis, binary, $\mathrm{P}=136 \mathrm{y}$, apparent orbit almost circular, many speckle data, measured position deviates from ephemeris, but fits better to the trend of recent speckle data. See figs. 3 and 4.
08391: in Pyxis, binary, $P=123 y$, orbit highly inclined, many speckle data with only small scatter, but significant deviations from ephemeris. Own measure closely follows trend of recent speckle data. Residuals refer to ephemeris.
08394: in Pyxis, binary, $P=66 y$, few data.
09125: in Vela, few data, PA decreasing, rho increasing.
09307: ψ Velorum, binary, P = 34 y, own measure deviates from ephemeris, but follows the trend of recent speckle data. See fig. 6.
09333: in Carina, "neglected".
09372: in Vela, PA increasing.
10036: in Carina, "neglected", few data, rho virtually constant since about a hundred years, PA increasing?

Double Star Measurements at the Southern Sky with a 50 cm Reflector ...

10062: in Vela, binary, P = 232 y, few data. See fig. 3.
10333: in Vela, tripel, too few data, residuals ambiguous, $\mathrm{PA}(\mathrm{BC})$ increasing.
10361: in Hydra, binary, $P=210 y$, orbit well documented, recent speckle data with only small scatter suggest fairly accurate extrapolation.
10373: in Vela, close and fast binary, $P=16 y$, although measurement difficult, because companion on diffraction ring, position seems to deviate from the ephemeris, and to follow the trend of recent speckle measurements. See fig. 3.
10468: mu Velorum, binary, $P=138$ y, few data, own measure of rho as well as recent speckle data fit quite well to the recently revised orbit.
10537: in Carina, few data, residuals refer to last entry in speckle catalog from 1991.
11234: in Musca, few data, residuals ambiguous.
11247: in Centaurus, binary, $P=421$ y, few speckle data.
11286: in Centaurus, binary, $P=650$ y ?, only small portion of orbit covered, own measure follow speckle data, all deviate from ephemeris.
11366: in Hydra, relfix, cpm, few data, residuals ambiguous.
11550: in Centaurus, binary, P = 930 y ?, orbit highly inclined, only small portion documented, measured position is far off from ephemeris.
12036: in Centaurus, binary, $P=109 y$, small scatter of recent speckle data, PA and rho rapidly decreasing.
12048: in Crux, relfix, few data, dim companion x near A (~13 mag?) not listed in the WDS. See fig. 10.
12158: in Corvus, binary, $P=873$ y ?, orbit is preliminary, but recent speckle data with relatively small scatter let short term extrapolation appear reasonable.
12249: in Crux, few data, residuals ambiguous.
12260: in Corvus, binary, $P=707.6$ y ?, orbit ambiguous, highly inclined, few data.
12266: alpha Crucis, AB binary, no closed orbit determined, few data, even fewer for $A C$, residuals ambiguous. Separations of both AC and AG have increased by 2.2" or 2.3", respectively, since my last measurements in 2012, while the PA's were about the same. Imaging of component G was done without Barlow, and of distant C even with a reducer to increase the field of view. The corresponding scaling factors were calculated on the basis of images of $A B$, taken with Barlow.
12283: in Crux, binary, $P=2520$ y ?, orbit preliminary, few data, PA decreasing. BC not resolved.
12463: beta Muscae, binary, $P=383$ y, measured posi-
tion is lying exactly on the orbit, but deviates from the ephemeris. This seems to be shifted by about 5 years. See figs. 5a and 5b.
12567: in Centaurus, binary, $P=294$ y, measured position is close to recently revised orbit.
13038: in Virgo, binary, P = 59 y ?, orbit almost directly edge-on.
13066: in Centaurus, "neglected", PA decreasing, rho slowly increasing.
13074: in Centaurus, relfix, PA decreasing, own measure seems to follow the long time trend, despite large scatter of recent speckle data, rho decreasing since about 1950.
13149: in Virgo, binary, orbit revised in 2014, $P=122.7$ y , few data.
13325: in Musca, binary, $P=590$ y, few data, rho deviates from ephemeris, in accordance with recent speckle data.
13438: in Centaurus, few data, PA and rho decreasing.
13520: in Centaurus, binary, newly revised orbit, $P=$ 280 y, PA decreasing, rho rapidly increasing.
13535: in Centaurus, binary, $P=258$ y, few data, measured position deviates from ephemeris, similar to recent speckle data. See figs. 7a and 7b.
14077: in Centaurus, binary, $P=233$ y, measured position reasonably fits to recently revised ephemeris.
14202: in Lupus, few data, rho seems to be slowly decreasing, residuals ambiguous.
14396: alpha Centauri, AB binary, $P=79.9$ y, well documented.
14408: in Circinus, "neglected", few data, rho seems to be increasing, residuals ambiguous.
14542: in Circinus, binary, $P=288$ y, few data, own measure close to ephemeris.
14565a: in Centaurus, binary, $P=40$ y, own measure close to ephemeris.
14565b: also known as DUN 174, in Lupus, although denoted as relfix by Burnham, rho has decreased since 1826, while the PA stays about constant in the last hundred years.
14575: also known as 33 Librae, AB binary, $P=2130$ y (?), only a small portion of the orbit is documented, but this is on a long stretch, which can fairly accurately be extrapolated to the near future.
14587: also known as 59 Hydrae, binary, $P=429$ y, measured position fits well both the ephemeris and the trend of recent speckle data. See fig. 3.
15051: pi Lupi, PA slowly decreasing.
15140: in Lupus, "neglected", PA decreasing, while rho about constant.
(Continued on page 86)

Double Star Measurements at the Southern Sky with a 50 cm Reflector ...

15160: in Libra, binary, $P=156 \mathrm{y}$, large scatter of recent PA (speckle) data.
15192: in Libra, few data, PA decreasing.
15234: gamma Circini, binary, $P=270 y$, while the measured PA is close to the newly revised ephemeris, rho is slightly off.
15295: in Circinus, "neglected", PA increasing.
15313: in Lupus, triple, $A B$: binary, $P=227.8 \mathrm{y}$, orbit almost directly edge-on, rho is rapidly increasing. C is orbiting around $A B, P=1258$ y ?, few data. See fig. 3.
15351: gamma Lupi, binary, $P=190 y$, orbit highly inclined, but reasonably well documented. See fig. 3.
15536: in Scorpius, PA and rho decreasing.
15557: in Scorpius, binary, P = 158 y , two orbits calculated by Scardia [6], own measure seems to better fit to the first one.
15569: xi Lupi, relfix, "splendid".
16035: jota ${ }^{1}$ Normae, triple, all cpm, AB binary, $\mathrm{P}=$ 26.9 y, PA and rho rapidly decreasing, AB-C: few data, PA decreasing. See fig 3.
16038: in Lupus, "neglected", although deemed relfix by Burnham, PA and rho are slowly decreasing.
16044: xi Scorpii, interesting triple, $A B$: binary, $P=45.8$ y, many speckle data. Own measure fits well to both ephemeris and literature data. $\mathrm{AC}: \mathrm{P}=$? y , only small portion of orbit covered. Residuals refer to the ephemeris. PA and rho data exhibit large scatter, possibly due to confusion as to which to refer, A or AB. See fig. 9.
16120: nu Scorpii, "double-double", but no orbits determined, rho(AB) slowly increasing, PA(CD) slowly increasing.
16294: alpha Scorpii, "Antares", binary, preliminary orbit, $\mathrm{P}=1218 \mathrm{y}$, only few recent data, own measure close to ephemeris, although difficult because of large difference of brightness of the components.
16425: in Scorpius, binary, "premature orbit", own measure close to ephemeris.
17104: eta Ophiuchi, binary, $P=88 \mathrm{y}$, many speckle data with small scatter. See fig. 3 .
17153: also known as 36 Ophiuchi, binary, $\mathrm{P}=550$ y (?),"premature orbit".
17190: in Scorpius, binary, $\mathrm{P}=42.1 \mathrm{y}, \mathrm{PA}$ and rho rapidly decreasing.
17443: in Apus, binary, $P=101$ y, few data, PA decreasing, rho increasing.
18068: in Corona Australis, binary, $\mathrm{P}=191 \mathrm{y}$, own measures deviate from ephemeris, in accordancewith the trend of speckle data.

Double Star Measurements at the Southern Sky with a 50 cm Reflector ...

Abstract

(Continued from page 81) Catalog of Orbits of Visual Binary Stars [6]. Data available up to December 2014 are taken into account, as of writing this article. In several cases, larger deviations were found, which often agree with trends of literature data. These will be discussed in more detail below. In other cases, literature data are so scarce and/or exhibit so large a scatter that no reasonable residuals can be given.

Systems used for calibration of the image scale were carefully selected. In Table 1, these are marked with shaded lines. Criterion was a well documented history of literature data, i. e. many data with small scatter, generally from the speckle catalog [5], such that extrapolation to the current date was unambiguous. Statistical analysis with 16 pairs resulted in a calibration factor of 0.0967 arcsec/pixel (with Barlow) with an error margin of $+/-0.3$ percent. Maximum error margins for separation measurements are expected to be of the order of $+/-0.02$ arcsec for the range of relatively small separations considered here.

Generally, residuals were calculated as differences against extrapolated literature data, mainly from the speckle catalog, and for binaries against ephemeris data [6]. In some cases, no reasonable residuals could be given, because of too few data and/or too large a scatter. Some systems exhibit significant deviations which are discussed in the notes or below. Residuals of PA and rho values are plotted versus the measured separation in Figures 1 and 2, respectively.

As can be seen in Figure 1, several residuals are greater than the error limits. As they are usually calculated with respect to the current ephemeris, deviations may indicate that this should sooner or later be revised. In fact, in many cases, residuals against the trend of recent measurements are found much smaller. Examples are shown in Figures 4 and $6-8$ below.

The error margins of measurements of the position angle are expected to be of the order of about $+/-0.2$ degrees for large separations, but to increase toward small separations, and can reach several degrees for very close pairs. The reason is the fixed resolution in the images. In fact, this is apparent in the plot in Fig. 2. However, a number of pairs seem to stand out more than this, in particular binaries with not well known orbits.

Some images of double and multiple systems are presented in the following figures. Fig. 3 is a selection of close binaries with sub-arcsec separations.

Concluding remarks

For many of the doubles investigated here there are only few data found in the literature, and often with

Figure 1. Plot of the residuals of rho versus rho. Semi-logarithmic scale. Pairs used for calibration are marked with superposed open circles. Some systems with large deviations are marked with their names. Symbols with squares denote binaries with significant deviations from ephemeris data. See also notes.

Figure 2. Plot of the residuals of the P.A. versus rho. Semilogarithmic scale. Pairs used for calibration of the image scale are marked with superposed open rhombs. Some systems with large deviations are marked with their names. See also notes.

Double Star Measurements at the Southern Sky with a 50 cm Reflector ...

1 Nor	HWE 78 Lup	SEE 119 Vel	BU 239 Hya	SEE 143 Cen
$!$	8	0	\%	*
0,26"	0,38"	0,46"	0,47"	0,49"
BU 205 Pyx	BU 1118 Oph	SLR 8 Vel	γ Lup	1173 Vel
**	*	\bullet	* *	\bigcirc
0,54"	0,55"	0,81"	0,83"	0,96"

Figure 3. A selection of close binaries. North is down, and east is right, as in all other star images. See also notes 16035, 15313, 10373, 14587, 12036, 08331, 17104, 08321, 15351, 10062, respectively.

Fig. 4: The orbit of BU 205 AB in Pyxis (WDS 08331-2436). Adopted from reference [6]. Recent speckle data (blue), as well as my own measurement (purple) tend to deviate from the ephemeris. See Fig. 3 and note 08331.

Figure 5a: (Top) The binary R 207/beta Muscae (WDS 12463-6807). Composite of two imaging series recorded on different dates. See also note 12463.
Figure 5b: (Bottom) The orbit of beta Muscae. Adopted from reference [6]. Positions measured in 2012 and 2014 (purple) are on or close to the orbit, but the ephemeris for the respective dates systematically deviate, as indicated. Blue symbols indicate recent speckle data. See also note 12463.

Double Star Measurements at the Southern Sky with a 50 cm Reflector ...

Figure 6. The orbit of COP 1 (WDS 09307-4028, ψ Vel). Adopted from reference [6]. The measured position (purple) deviates from the orbit, but follows the trend of recent speckle data (blue). See also note 09307.

Figure 8a. (Top) Plot of the position angle versus date of the binary of BU 208 AB in Pyxis (WDS 08391-2240). Open squares indicate speckle data [5], the circle with cross is my measurement of 2014. The solid line is the ephemeris (Hei1990c).
Figure 8b. (Bottom) Plot of the separation rho of BU 208 AB versus date. The meaning of the symbols is as above. Deviations from the ephemeris are clearly greater than the error margins of the measurements.

Figure 7a. (Top) Plot of the position angle versus date of the binary of HWE 28 AB in Centaurus (WDS 13535-3540). Open squares are speckle data [5], circles with crosses are own measurements of 2012 and 2014. The solid line is the ephemeris (Lin1998a).
Figure 7b. (Bottom) Plot of the separation ρ of HWE $28 A B$ versus date. The meaning of the symbols is as in Fig. 7a. Deviations from the ephemeris are clearly greater than the error margins of the measurements.

Double Star Measurements at the Southern Sky with a 50 cm Reflector ...

Figure 9. The triple xi Scorpii (STF 1998, WDS 160441122). The period of binary $A B$ is about 46 years, while the orbit of C around $A B$ is still not well known. See note 16044.

(Continued from page 87)

large scatter, although most systems are fairly bright, and easily accessible. The accuracy of my own measurements is checked by comparing with mainly speckle data of systems, which have frequently been measured. Generally, the scatter is of comparable magnitude. As a result of this work, several double star systems were found, which should more often be measured, in order to improve the knowledge about their status, or of their orbits, respectively. In particular, the following systems seem to be interesting:

WDS Ident.	Name
$08331-2436$	BU 205 Pyx
$08391-2240$	BU 208 Pyx
$08394-3636$	I 314 Pyx
$09307-4028$	COP 1, ψ Vel
$10373-4814$	SEE 119 Vel
$11286-4508$	I 885 Cen
$11550-5606$	HLD 114 Cen
$12463-6807$	R 207, β Mus
$13325-6914$	I 298 Mus
$13535-3540$	HWE 28 Cen
$16044-1122$	STF 1998 AC, ξ Sco
$18068-4325$	HJ 5014 CrA

Acknowledgement

I have made extensive use of the double star catalogs available online at the USNO website. Special

Figure 10. The multiple DUN 117 in Crux (WDS 120486200). Composit of a short exposure (specs in the centers of components A, B, and C), and a longer exposure as a negative, in order to show the dim companion x. See note 12048.
thanks are due to Brian Mason for directing my attention to a number of less frequently observed and "neglected" doubles.

References

[1] Anton, R., Lucky imaging. In Observing and Measuring Visual Double Stars, 2nd Edition, Robert Argyle, ed., Springer, New York, 2012
[2] IAS, http://www.ias-observatory.org
[3] Anton, R., 2010, Journal of Double Star Observations, vol. 6 (2), 133-140.
[4] Mason, B.D. et al., The Washington Double Star Catalog (WDS), U.S. Naval Observatory, online access Dec. 2014.
[5] Hartkopf, W.I. et al., Fourth Catalog of Interferometric Measurements of Binary Stars, U.S. Naval Observatory, online access Dec. 2014.
[6] Hartkopf, W.I. et al., Sixth Catalog of Orbits of Visual Binary Stars, U.S. Naval Observatory, online access Dec. 2014.
[7] Burnham, R., Jr., 1978, Burnham's Celestial Handbook, Dover Publications, New York, 1978.

Reaching Magnitude +16 with the Modified Video Drift Method

Ernest W. Iverson
International Occultation Timing Association
Lufkin, Texas
ewiverson@consolidated.net
Richard L. Nugent
International Occultation Timing Association
Houston, Texas
RNugent@wt.net

Abstract

The video drift method of measuring double stars is a quick and efficient way to obtain position angle and separation measurements. With ordinary video cameras magnitude +12 and deeper double star systems often prove difficult or even impossible to measure without using an image intensifier. A simple modification to the video drift method and corresponding VidPro analysis program now makes reaching magnitude +16 a reality for modest amateur equipment.

Introduction

In our previous reports using the video drift method (Nugent and Iverson, 2011-2015), we have reported position angle and separation measurements obtained with our respective 14 -inch (35 cm) Meade LX-200 Schmidt-Cassegrain telescopes and other, smaller aperture, telescopes. Author Nugent, using a non integrating Watec 902 H 2 Ultimate video camera fitted with a Collins I^{3} image intensifier, has measured double stars down to magnitude +15.6 (Nugent and Iverson, 2014). This was accomplished in relatively dry air at his west Texas observatory. Unfortunately the Collins I ${ }^{3}$ image intensifier is no longer being manufactured. Author Iverson measures double stars with a cooled variation of the Astrovid Stella Cam 3 video camera (equivalent to the Watec $120 N+$ camera) which can co-add (stack) video frames within the camera (integration). Coadding 2 frames is the equivalent of doubling the exposure, co-adding 4 frames equates to quadrupling the exposure, and so on. Longer exposure times (with the telescope motor drive on, no drifting) allow reaching fainter stars unattainable with conventional nonintegrating video cameras.

Although the Stella Cam 3 video camera is capable of virtually unlimited user-defined integration periods, hardware-defined integration periods extend up to 8.4 seconds (256 frames). Nugent and Iverson (2012) suggested that integration periods longer than 0.198 seconds (using a Stella Cam EX camera) are impractical with the original video drift method. As the integration time increases, the stars drift in increasingly longer jumps which eventually lead to smearing/streaking of the star images, making them unsuitable for measurement. The freeware program Limovie (Miyashita, 2006), used to measure the stars' (x, y) position in each video frame, has a difficult time following the longer jumps. When the program cannot keep up it begins to report inaccurate (x, y) coordinate positions and then it eventually loses the ability to track the stars. Due to this limitation and the humid, unstable air over his east Texas observatory, author Iverson has been unable to routinely measure doubles fainter than +12 magnitude.

While investigating the Reduc double star analysis program (Losse, 2011) and the combined Reduc/VidPro methodology used by Wasson (2014), it was realized that a few simple changes to the video drift method and a corresponding change to the VidPro double star anal-

Reaching Magnitude +16 with the Modified Video Drift Method

ysis program would significantly increase the depth at which ordinary integrating cameras could measure double stars. These changes include (1) recording the double star at an integration level long enough to allow dim components to be easily seen while the telescope mount is tracking and (2) recording several drifts (no tracking) of a bright nearby star at the same declination to determine the scale factor and drift angle.

Methodology

In this study we used our respective equatorial mounted 14-inch (35 cm) Schmidt-Cassegrain telescopes and video recording equipment used in our previous papers (Nugent and Iverson, 2011-2015). At the beginning of an observing session, the video camera's chip was adjusted parallel to the approximate true eastwest direction by trial and error rotation of the camera and slewing the telescope. Once aligned, the camera alignment was not changed. The VidPro program compensates for any remaining offset from true east-west. Data was only recorded when the target double star was within one hour of the meridian.

The modified video drift method records video when the telescope is tracking the double star (motor drive on) and when the double star is allowed to drift (motor drive off) across the field of view (FOV). The procedure for recording the necessary video is as follows:

1) Locate the target double star and center it in the video camera's FOV.
2) Choose a camera integration level and gain setting where the secondary star is visible but not saturated. Saturating the primary star is usually unavoidable, but this is not a problem as long as the secondary star doesn't merge with the primary.
3) With the telescope motor drive on, record up to 2.5 minutes of video. The stars may move slightly depending on the telescope balance, the telescope mounts ability to track the night sky, and/or accuracy of the polar alignment. This slight movement does not affect the results. Stop the recording.
4) Adjust the integration time to less than 0.132 seconds. Slew the telescope over to the nearest bright star that closely matches the target's declination (see below). If the primary star is visible then use it.
5) Resume recording and position this star at the eastern edge of the FOV. Turn the telescope motor drive off and allow this star to drift across the entire FOV. Repeat this east to west drift at least 3 or 4 times on this same recording. Now stop recording.

By recording a bright star drifting across the FOV, the video drift method and modified video drift method avoid using calibration (also known as reference or
standard) doubles that some investigators rely on. Calibration doubles are believed to have stable position angle and separations over long periods, thus they provide a reference coordinate system frame for making new position angle and separation measurements for new targets. If the calibration double position angles and separations have not been updated or have significant errors, then these errors will propagate to the new targets being measured. The modified video drift method described here is completely self-calibrating thus no calibration/reference doubles are needed.

Measurement and Reduction

Once the video is obtained, it's analyzed in two stages. First, the video drifts are analyzed using the freeware programs Limovie and VidPro as previously described (Nugent and Iverson, 2011-2015) with one exception. It is important that both Limovie aperture rings are placed on the drifting star. Since only a single star is used during these drift videos, the VidPro program position angle and separation output cells will show meaningless results. This is not an issue since at this stage we are only interested in calculating the scale factor and camera offset from east to west (drift angle). The averaged result for both quantities will be manually entered into VidPro again during the second step of the reduction.

The second step uses Limovie and VidPro again but this time to reduce the tracking video file. Limovie's aperture rings are placed over the primary and secondary stars. Recall the target double star was not drifting, so the aperture rings will remain essentially stationary (see step 3 above). Because the stars are not drifting across the FOV, VidPro cannot calculate the scale factor or drift angle in this situation. The previously determined scale factor and drift angle from the first step are manually inserted into a modified version of VidPro. As before, Limovie creates a CSV file of (x, y) coordinates for the centroid of each star covered by an aperture ring for each video frame. The CSV file size should be limited to less than 5000 frames or about 2.5 minutes of video. This file is also manually copied into VidPro. When VidPro has all 3 inputs (scale factor, drift angle, and the CSV file), it automatically calculates the position angle and separation along with standard deviations.

The acquisition of the videos using this method takes a bit longer than the original drift method due to the extra time needed to make the tracking video. The level of integration used will significantly influence the amount of tracking data recorded. This is because as integration time increases, fewer new images are available in a given time interval. A camera integrating at

Reaching Magnitude +16 with the Modified Video Drift Method

sixteen frames outputs a new image approximately every 0.5 second at the NTSC video frame rate. At 128 frames, a new image will be output approximately every 4.2 seconds. The duplicate images do not affect the final result.

In order to prove that there is no significant difference in the results obtained from the conventional VidPro procedures and the modified VidPro procedures, 20 well studied double star systems were selected. Both the primary and secondary star needed to be bright enough to allow drift scanning with either no integration or, if used, then less than 0.132 seconds of integration. Each system was first processed using the traditional video drift method (Nugent and Iverson, 2011). The scale factor and drift angle measurements obtained were then averaged for each double star. Next, each double star was reprocessed using the modified video drift method (steps 1-5 above). The averaged scale factor and drift angle measurements obtained from the traditional analysis were inserted into a modified version of the VidPro designed for use with tracking data.

Ordinary drift scans are essential for VidPro to determine the scale factor and the offset of the camera's video chip from the true east west direction. If a replacement star is used then its declination should be close to the primary star's declination. From Equation 1, below, the cosine of the declination is used in determining the scale factor (Nugent and Iverson, 2011).

$$
\begin{equation*}
\text { scalefactor }=\frac{(\text { driftime }) 15.041068 \cos (\text { dec })}{\sqrt{\left(x_{B}-x_{E}\right)^{2}+\left(y_{B}-y_{E}\right)^{2}}} \tag{1}
\end{equation*}
$$

$x_{B}, y_{B}, x_{E}, y_{E}$ are the beginning and endpoints of the drift, and "dec" is the declination of the primary star or its substitute. Drifttime, in seconds, is defined by the number of frames (x, y pairs) divided by the camera frame rate. The National Television Standards Committee (NTSC) frame rate is 29.97 frames per second which we round to 30 for convenience.

Reaching fainter double stars with a common integrating video camera is significantly enhanced by using the AviSynth "Level" filter (http://avisynth.nl/ index.php/Levels). It is a one line addition to the AviSynth script (Appendix I) used by Limovie to open the video file. This filter can be used to adjust the brightness, contrast, and gamma of the video clip (Appendix II).

In cases where observations were made over multiple nights or more than one observation was obtained in a single night, the position angle and separation values
were merged using weighted averaging (Nugent and Iverson, 2013). The scale factor and drift angle measurements from multiple drifts were merged as a simple average. All references to stellar magnitudes have been copied from the online WDS summary catalogue.

Table 3 was compiled using the online WDS summary catalogue. It is intended to be only a rough estimate of the total number of double stars visible from the southern United States over the course of a year. The stars included covered a region of the night sky between 90° north and -30° south declination. Any entry in the WDS catalogue lacking a companion star magnitude was not considered. Double stars with a separation less than 5 arc seconds are probably not measurable by the modified video drift method and have been excluded from the table. Most of the southern hemisphere double stars were also excluded from consideration. Percentages were calculated based on a total of 59,590 double stars visible over the course of a year.

Results

As an initial test of the modified VidPro method, a number of doubles were picked at random from the doubles measured as part of our ongoing double star measurement program. The results from both the modified video drift method (tracking) and original video drifting method for these double stars are given in Table 1. The column titled $P A^{\circ}$ tracking-drifting presents the difference between the position angle results obtained by the two methods. The difference in position angle did not deviate by more than 0.1 degrees over the 20 examples. This is insignificant considering the online WDS summary catalogue gives the position angle to the nearest whole degree. The measured separations also varied by an insignificant amount. For the 20 doubles investigated, the separation did not vary by more than 0.04 arc seconds. Again, the WDS summary catalogue reports separation to the nearest tenth of an arc second. The WDS observational data base includes the known measurements for a double star. It typically reports precisions up to 2 decimal places for the position angle and 3 decimal places for the separation. Entries in this data base just mirror the precision reported by other authors in the literature using a variety of methods.

The standard deviations from the tracking data analysis have been included in Table 1. The standard deviations from the drift analysis are not presented, but they are similar to the values reported in our previous papers.

The next step was to determine the faintest double star that could be measured reliably. Table 2 reports position angle and separation measurements obtained

Reaching Magnitude +16 with the Modified Video Drift Method

Table 1. Results of double star measurements using both the Video Drift Method and the Modified Video Drift Method.

WDS	Discover	$\begin{aligned} & \mathrm{PA}^{\circ} \\ & \text { Track- } \\ & \text { ing } \end{aligned}$	```std. dev. Track- ing```	$\begin{gathered} \mathrm{PA}^{\circ} \\ \text { Drift- } \\ \text { ing } \end{gathered}$	$\begin{gathered} \text { PA }^{\circ} \\ \text { Track } \\ - \\ \text { Drift } \end{gathered}$	Ave Sep" Tracking	```std. dev. Track- ing```	```Avg Sep" Drift- ing```	$\begin{gathered} \text { Sep" } \\ \text { Track } \\ \text { - } \\ \text { Drift } \end{gathered}$	Date	$\begin{gathered} \text { No. } \\ \text { Track- } \\ \text { ing } \\ (x, y) \\ \text { pairs } \end{gathered}$	Mag. Pri.	Mag. Sec.	No. Obs Tra cki ng	No. Obs. Drif ting	No. Nig hts
00407-0421	HJ 323	285.5	0.30	285.5	0.0	62.84	0.34	62.81	0.03	2014.805	1953	6.01	8.46	1	4	1
14575-2125	H N 28AB	305.6	0.57	305.7	-0.1	25.68	0.28	25.65	0.03	2014.479	1348	5.88	8.18	2	2	1
$15041+0530$	STF1904	347.9	1.11	347.8	0.1	9.97	0.21	9.96	0.01	2014.479	1408	7.19	7.37	2	2	1
$15127+1917$	STF1919	10.3	0.48	10.2	0.1	23.06	0.21	23.07	-0.01	2014.479	1338	6.71	7.38	2	2	1
15145-1826	SHJ 195	139.8	0.28	139.8	0.0	46.77	0.27	46.79	-0.02	2014.479	1242	6.79	8.32	2	2	1
15187+1026	STF1931AB	166.5	0.80	166.5	0.0	13.17	0.21	13.18	-0.01	2014.479	1004	7.20	8.07	2	2	1
15201+2937	ENG 53	342.3	0.08	342.3	0.0	142.16	0.19	142.13	0.03	2014.499	3539	5.62	10.46	3	6	1
15202+3042	STF1935	289.0	1.16	289.1	-0.1	8.56	0.15	8.56	0.00	2014.499	5502	9.91	10.19	3	6	1
15282-0921	SHJ 202AB	132.2	0.23	132.2	0.0	52.06	0.24	52.06	0.00	2014.479	1089	6.95	7.61	2	2	1
15288+3101	A 1369AC	258.8	0.17	258.8	0.0	73.31	0.18	73.32	-0.01	2014.499	4113	10.66	10.48	3	6	1
15387-0847	STF1962	189.3	0.82	189.5	-0.1	11.60	0.20	11.60	0.00	2014.479	1079	6.44	6.49	2	2	1
15591-1956	SHJ 213	317.4	0.75	317.4	0.0	17.34	0.25	17.37	-0.03	2014.479	1153	8.11	8.50	2	2	1
16044-1127	STF1999AB	98.4	0.93	98.4	0.0	11.83	0.20	11.83	0.00	2014.479	1159	7.52	8.05	2	2	1
$16060+1319$	STF2007AB	321.5	0.32	321.5	0.0	38.33	0.23	38.29	0.04	2014.479	1088	6.89	7.98	2	2	1
$16401+3038$	LAU 3	262.6	0.13	262.6	0.0	80.01	0.16	79.99	0.02	2014.499	4846	9.86	10.52	3	6	1
$16457+3000$	STF2098AB	144.9	0.78	144.8	0.1	14.17	0.18	14.18	-0.01	2014.499	5588	8.77	9.61	3	6	1
$16457+3000$	STF2098AC	128.1	0.17	128.1	0.0	65.58	0.18	65.58	0.00	2014.499	5497	8.77	8.81	3	6	1
$16534+2925$	HEI 13	121.3	1.39	121.2	0.1	7.70	0.18	7.67	0.03	2014.499	5558	10.07	10.24	3	6	1
$21576+1157$	STTA227	32.6	0.24	32.6	0.0	77.94	0.33	77.96	-0.02	2014.805	1660	7.51	9.03	1	4	1
22451-0240	$\begin{aligned} & \text { STF2938A, } \\ & \text { BC } \end{aligned}$	341.8	0.94	341.8	0.0	19.82	0.36	19.81	0.01	2014.805	1393	9.41	9.55	1	4	1

for 22 doubles where the companion star is too dim or both the primary and companion star are too dim to be measured by the original video drift method. Three of these doubles were observed on multiple nights. The faintest double measured ($01325+1417$ LDS 1102) has a primary /secondary magnitude of $+11.1 /+16.9$. Since measurements have only been made in the relatively humid, unstable air of east Texas, it is reasonable to expect that even fainter doubles can be measured in a dryer environment with better seeing.

Only 3 of the double stars studied were measured within in the last 5 years and most were measured 15 years ago or longer. Position angle and separation measurements obtained using the modified video drift method (Table 2) in general varied very little from their last historical measurements. In only 4 instances did the position angle change by more than one degree.

The average change was 0.66 degrees. Only one double star ($01325+1417$ LDS 1102) showed a significant change (3.1 degrees). Inspection of the WDS historical data base suggested that this was not unreasonable given the high proper motions of the components. All 22 double stars studied showed very little change in separation from their historical measurements. The maximum change was 0.9 arc seconds while the average change was 0.30 arc seconds. The USNO CCD Astrographic Catalogue project (Hartkopf, W., et al., 2013) derived position angle and separation measurements from the UCAC4 catalogue for 20 of the 22 doubles in Table 2. Inspection of the WDS historical database revealed that in all but 5 cases the most recent measurement was derived from either the 2 MASS catalogue (4 doubles) or the UCAC4 catalogue (13 doubles). The close agreement with the UCAC4 measurements sug-

Reaching Magnitude +16 with the Modified Video Drift Method

Table 2. The results of 22 double stars using the Modified Video Drift method and long integration periods. These double stars were too dim to be measured by the original video drift method author Iverson's east Texas observatory.

WDS	Discover	PA ${ }^{\circ}$	std. dev.	Ave Sep"	std. dev.	Date	No. of Tracking (x, y) pairs	Mag. Pri.	Mag. Sec.	No. Obs.	Nights
00506-0121	HJ 1998	330.1	0.91	20.7	0.33	2014.871	1970	11.41	14.59	1	1
01285+0940	UC 561	236.6	0.78	18.4	0.31	2014.896	4528	11.50	15.50	1	1
01295-1120	UC 564	236.2	0.45	30.8	0.28	2014.951	7080	10.20	16.30	2	1
01298+0510	BAL2 294	220.6	2.09	10.9	0.35	2014.929	6520	10.44	12.20	2	1
01324-0930	LDS2204	238.1	0.86	17.7	0.26	2014.929	8332	10.20	14.50	2	1
$01325+1417$	LDS1102	2.4	1.32	9.6	0.42	2014.951	4820	11.10	16.90	1	1
01567-0754	LDS5358	97.7	0.32	69.1	0.45	2014.948	4848	13.82	16.26	1	1
02354-0228	GWP 341	99.6	0.40	51.3	0.48	2014.951	4680	8.50	16.30	1	1
$02444+1057$	PLQ 35AB	315.3	0.82	24.6	0.34	2014.929	9718	11.20	15.20	2	1
$02444+1057$	SKF 20AC	107.7	0.78	20.7	0.31	2014.929	9924	11.20	15.30	2	1
$02444+1057$	SKF 20BC	122.8	0.49	43.9	0.43	2014.929	9866	15.20	15.30	2	1
02550-0029	MMA 33	337.1	0.49	17.7	0.20	2014.896	8002	12.00	15.40	2	1
$03353+1725$	GWP 483	88.4	0.40	23.6	0.19	2014.805	14204	11.50	15.30	3	2
$04042+2416$	POU 371AB	163.3	1.41	9.6	0.22	2014.948	9396	11.60	14.10	2	1
$04042+2416$	POU 372AC	227.5	0.68	20.9	0.20	2014.948	9399	13.01	16.25	2	1
$04076+2322$	POU 402	198.0	0.77	16.0	0.19	2014.805	12106	12.82	15.96	3	2
05136+2304	POU 590	330.7	0.61	11.8	0.15	2014.805	16631	13.30	15.50	4	2
05166-1048	GWP 665	117.2	0.30	49.7	0.27	2014.948	9651	11.52	16.12	2	1
$06053+1838$	GWP 737	333.1	0.34	46.9	0.25	2014.948	9534	10.60	16.11	2	1
22073-0002	BAL 934	337.7	1.06	14.4	0.29	2014.871	2046	10.84	12.03	1	1
$22114+0057$	BAL1240	274.4	1.62	10.1	0.32	2014.871	1664	11.89	12.02	1	1
$23292+0049$	HJ 3195	99.3	1.01	14.9	0.30	2014.871	2043	11.63	12.31	1	1

gest the modified video drift method is a useful method for studying faint double stars.

As demonstrated previously (Nugent and Iverson, 2015), the value for both the position angle and separation can be considerably in error based on the trend line formed by plotting the previously reported values. Considering the double stars in Table 2, the most frequently observed system has only 7 previous measurements. The majority of the double stars have less than 5 measurements. Graphical trend line analysis is not very meaningful in this situation.

Table 3 illustrates the increased accessibility of potentially measureable doubles that a southern United States observer might have using the modified video drift method. Using the limits established for author Iverson's observatory as an example, on a night with average seeing (magnitude +11), it is estimated that about 29 percent of the available double stars could be measured. On a night with good seeing (magnitude +12), this number increases to about 46 percent. However, using the modified video drift method, over 87 percent of the double star systems listed in the WDS

Reaching Magnitude +16 with the Modified Video Drift Method

Table 3. The estimated number, by magnitude, and the relative percentage of double stars from 90° north down to -30° south declination. This estimate was compiled using the WDS online summary catalogue. See text for an explanation.

Magnitude	Number of Double Stars < magnitude	Percent of total
18.99	57225	96.0
17.99	54917	92.2
16.99	52248	87.7
15.99	48727	81.8
14.99	43590	73.1
13.99	36997	62.1
12.99	27582	46.3
11.99	17017	28.6
10.99	8495	14.3
9.99	3580	6.0

catalog should be within reach. Considerations such as locating the double star at its published coordinates, camera sensitivity to a star's spectral type, and the very slow drift rates at high declinations will limit the actual number of double stars that can be studied with a video camera.

Conclusions

We have demonstrated that with a 14 -inch telescope, the position angle and separation of double stars down to at least magnitude +16 can be easily measured using the modified video drift method. It is a reasonable assumption that smaller telescopes might see a 3-4 magnitude gain and a corresponding increase in the number of double star systems that can be reached. Both the video drift method and modified video drift method are fast and efficient tools. Traditional CCD cameras which are often very expensive are no longer the only tool capable of measuring dim double star systems. With an integrating video camera, the time involved to collect and analyze the data can be a bit more involved, especially when working at fainter magnitudes. Unfortunately the Stella Cam 3 is now out of production but the principles presented apply equally to other integrating camera brands.

The Image Source line of video cameras may prove useful in double star work. Although they lack the high sensitivity normally found in an astronomical video camera, they are capable of very long exposure times and reduced output frame rates. Additional changes to the modified video drift method may be needed to accommodate these cameras. This type of camera offers two important advantages. First, unlike analog video cameras, the CCD chip uses square pixels, and second, the video signal is digitized inside the camera instead of an external frame grabber. The result is that an aspect correction does not need to be applied to make the recorded image closely match the night sky (Nugent and Iverson, 2014).

Acknowledgements

This research makes use of the Washington Double Star Catalog maintained at the US Naval Observatory.

Appendix I

The AviSynth script is used to define the aspect ratio and set the image brightness. See Nugent and Iverson (2015) for an explanation of why the aspect ratio needs to be adjusted to fit the observed night sky for each system.

```
##########################################################
    AviSyth script used by Limovie to open a video file.
##########################################################
ClipMain = ("insert the video file path")
DirectShowSource(ClipMain)
LanczosResize(640,480) #sets the image size used by
                                    #Limovie to 640x480. Adjust this
                                    #value to match the observed sky.
Noise =25 #below this pixel value will be pure black
            #(the noise floor)
IH = 60 #above this pixel value will be pure white
Levels(Noise,1,IH,0,255-Noise, coring=false)

\section*{Appendix II}

The AviSynth "Level" filter is used to adjust the brightness, contrast and gamma of the video clip. See the web page: http://avisynth.nl/index.php/Levels for a complete description.

The AviSynth script file syntax is:
\[
\text { Levels }\left(I_{L}, G, \quad I_{H}, O_{L}, O_{H}, \text { coring }\right)
\]
\(I_{L}\) is the input pixel value that will be set to black and \(I_{H}\) is the input pixel value that will be set to white.

\section*{Reaching Magnitude +16 with the Modified Video Drift Method}

Gamma ( \(G\) ) controls the degree of nonlinearity in the conversion and should be set to 1 for black and white cameras. Making gamma less than 1 will brighten dim stars but it also has the negative effect of increasing the background noise. \(O_{L}\) is the output pixel value that will be set to black and \(O_{H}\) is the output pixel value that will be set to white. Increasing the input-low parameter \(\left(I_{L}\right)\) effectively raises the noise floor and increases contrast. This reduces the amount of noise seen in the Limovie 3D window. Settings up to 30 were common in our analysis. The input-high parameter \(\left(I_{H}\right)\) essentially acts as an inverse gain control. As the value decreases from 255, fainter star images become brighter and therefore easier for Limovie to follow. Settings as low as 50 were used. Changing the output pixel settings reduces the dynamic gray scale range of the image and should be avoided.

\section*{References}

Hartkopf, W., et al.,2013, Astronomical Journal, 146, 76(8pp).

Losse, Florent, 2012, "REDUC.62", www.astrosurf.com/hfosaf.

Miyashita, K., 2006, LiMovie, Light Measurement Tool for Occultation Observation Using Video Recorder, http://www005.upp.so-net.ne.jp/k_miyash/occ02/ limovie_en.html.
Nugent, R. and Iverson, E., 2011, Journal of Double Star Observations, 7, 185-194.
Nugent, R. and Iverson, E., 2012, JDSO, 8, 213-222.
Nugent, R. and Iverson, E., 2013, JDSO, 9, 113-121.
Nugent, R. and Iverson, E., 2014, JDSO, 10, 214-222.
Nugent, R. and Iverson, E., 2015, JDSO, 11, 21-28.
Wasson, R., 2014, JDSO, 10, 324-341.

\title{
Measuring Double Stars with Position Circle and Filar Micrometer Screw: Report \#2
}

\author{
Robert Korn \\ D-Gailenberg, robertjkorn@aol.com
}

\begin{abstract}
I present a list of 54 binaries observed in late 2012. Some remarks on changes against recently measured pairs are given. Also a short discussion about causes and consequences of diverging results obtained.
\end{abstract}

In JDSO Vol. 10 n .3 [1] I presented the method and equipment which I have been using for more than 7 years to measure separation and position angle of binaries.

Here are a further 54 double stars, selected from Washington Double Star Catalog (WDS) and observed and measured in late 2012. The measurements are given in Table 1. The criteria for my choices, just like the equipment and the method, have not been changed and are subject to two factors. The first factor is the limits given by the equipment: pairs with a separation of more than 10 " and a magnitude brighter than 9 . Second, I was looking for objects that showed significant changes in rho and/or theta in the past.

The evaluation of the following list and comparison of the results obtained, against the published measures from other observers in the WDS, gave occasion to investigate whether the divergences found showed some systematic scheme. Therefore I have attempted a graphic evaluation (Figure 1) to show the portion of diverging results over the 13 observing sessions that contributed to the list reported.

Two facts are quite significant. First, most divergences concern the distances, while angle measures are less affected. Second, the later the time of year, the more the quota of divergences increases.

So, I investigated further in the rho-measures; Figure 2 shows the ratio between consistent and diverging rho-measures over the distances, these split in 5 categories of 50 " steps.

Figure 2 shows very clearly that the portion of


Figure 1: Quota of diverging measures in rho and theta over 13 sessions reported.


Figure 2: Ratio between consistent to deviating measures in rho over separation.

\section*{Measuring Double Stars with Position Circle and Filar Micrometer Screw: Report \#2}

Table 1. Measurements of Double Stars Measured in 2012.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Name & RA & Dec & mag 1/2 & rho & theta & Date & N & Remarks \\
\hline S 838 AD & 00h 04.2 & \(62^{\circ} 17\) & 5.9/8.2 & 244" & \(197^{\circ}\) & 2012,807 & 2 & No change against v.r. \\
\hline STTA256 AB & 00h 08.0 & \(31^{\circ} 23\) & 7.1/7.3 & 110" & \(113.5^{\circ}\) & 2012,755 & 2 & Measures consistent, \(\theta \downarrow\) with trend \\
\hline BU 483 AC & 00h 09.1 & \(40^{\circ} 51\) & \(7.0 / 7.7\) & 158.2" & \(269^{\circ}\) & 2012.755 & 2 & Measures consistent, \(\theta \uparrow\) with trend \\
\hline BU 484 AC & 00h 09.7 & \(52^{\circ} 02\) & \(7.6 / 8.5\) & 81.8" & \(51^{\circ}\) & 2012.801 & 2 & No change \\
\hline ARY 7 AB & 00h 10.4 & \(58^{\circ} 31\) & 7.8/8.3 & 122.7" & \(1^{\circ}\) & 2012.801 & 2 & No change \\
\hline ARY 9 & 00h 11.6 & \(58^{\circ} 13\) & 7.1/8.6 & 135.1" & \(81.5^{\circ}\) & 2012.801 & 2 & ```
0 no change; \rho\downarrow. Con-
sistent
``` \\
\hline HJ 1944 & 00h 13.2 & \(-17^{\circ} 11\) & 7.7/9.0 & 65.3" & \(335^{\circ}\) & 2012.801 & 2 & م†, \(\theta \downarrow\) consistent \\
\hline STF 30 AB & 00h 27.2 & \(49^{\circ} 59\) & 7.0/8.9 & 14.2" & \(313^{\circ}\) & 2012.807 & 2 & \(\rho\) matches v.r. \(\Theta 2^{\circ}\) under v.r. \\
\hline STT 10 AC & 00h 27.5 & \(16^{\circ} 02\) & \(6.5 / 9.5\) & 272.5" & \(156^{\circ}\) & 2012.968 & 2 & ```
N No change
\rho 2" under v.r., but
with the trend
``` \\
\hline HJ 1968 AB & 00h 27.7 & \(-16^{\circ} 25\) & 7.3/10.0 & 36.92" & \(232.5^{\circ}\) & 2012.807 & 2 & \(\rho 1^{\prime \prime}\) over, \(\theta 1.5^{\circ}\) under v.r. Both with trend \\
\hline HJ 1981 A-BC & 00h 31.0 & \(-10^{\circ} 05\) & 6.9/8.4 & 78.7" & \(90^{\circ}\) & 2012.968 & 2 & \begin{tabular}{l}
P no change, \(\theta 2^{\circ}\) over \\
v.r. But matches trend
\end{tabular} \\
\hline HJ 323 & 00h 40.7 & \(-04^{\circ} 21\) & \(6.0 / 8.5\) & 62.2" & \(285.5^{\circ}\) & 2012.801 & 2 & No change \\
\hline H \(5 \quad 82 \mathrm{AB}\) & 00h 47.4 & \(51^{\circ} 06\) & 8.0/8.4 & \(56 "\) & \(75.5{ }^{\circ}\) & 2012.809 & 2 & No change \\
\hline STTA 9AB & 00h 49.9 & \(30^{\circ} 27\) & 7.8/8.8 & 120.9" & \(243.5^{\circ}\) & 2012.763 & 2 & \(\Theta\) No change. \(\rho 4^{\prime \prime}\) (!) over v.r. Measurements show no error; \(=0\) ". \\
\hline HJ 629 AC & 00h 55.6 & \(34^{\circ} 33\) & 9.3/8.9 & 65.8" & 257.5 \({ }^{\circ}\) & 2012.968 & 2 & Consistent with trend: \(\theta \uparrow, \quad \rho \downarrow\) \\
\hline STTA \(11 \mathrm{AB}, \mathrm{C}\) & 01h 07.2 & \(38^{\circ} 39\) & 7.6/8.8 & 60.5 " & \(163.3^{\circ}\) & 2012.763 & 2 & No change \\
\hline S 397 & 01h 21.1 & \(64^{\circ} 39\) & 6.3/8.6 & 56.5 " & \(339.5^{\circ}\) & 2012.878 & 2 & \(P\) no change; \(\theta 2^{\circ}\) under v.r., but matches \(\downarrow\) trend \\
\hline STTA 17 AC & 01h 24.5 & \(39^{\circ} 02\) & \(8.0 / 8.5\) & 134.7" & \(345^{\circ}\) & 2012.878 & 2 & P 2" under 2007 measure, confirming \(\downarrow\) trend. slightly under v.r. \\
\hline HJ 2052 & 01h 31.6 & \(-19^{\circ} \quad 01\) & 6.9/7.5 & 80.5" & \(114^{\circ}\) & 2012.807 & 2 & no change \\
\hline STF 142 AB & 01h 39.9 & \(13^{\circ} 15\) & 8.9/9.2 & 21.3" & \(65^{\circ}\) & 2012.807 & 2 & P slightly under v.r., confirming \(\downarrow\) trend; \(\theta 2^{\circ}\) under v.r., but with \(\downarrow\) trend \\
\hline KPR 1 AC & 01h 44.3 & \(09^{\circ} 29\) & 7.9/8.4 & 189.8" & \(285^{\circ}\) & 2012.807 & 2 & no change \\
\hline STFA 4 AB & 01h 56.2 & \(37^{\circ} 15\) & \(5.8 / 6.1\) & 207.1" & \(298^{\circ}\) & 2012.809 & 2 & no change \\
\hline ARN 90 AB & 01h 56.8 & \(38^{\circ} 02\) & 9.0/9.2 & 36.9 " & \(194.5^{\circ}\) & 2012.809 & 2 & no change \\
\hline H \(6 \quad 69\) AC & 02h 09.4 & \(25^{\circ} 56\) & \(5.0 / 8.0\) & 104" & \(277^{\circ}\) & 2012.878 & 2 & \[
\text { P no change; } \theta 2^{\circ} \text { under }
\]
v.r. \\
\hline BUP 30 AC & 02h 22.8 & \(41^{\circ} 24\) & \(5.8 / 7.4\) & 302.2" & \(9.5^{\circ}\) & 2012,817 & 2 & No change \\
\hline WAL 20 AC & 03h 02.3 & \(41^{\circ} 24\) & 8.0/8.9 & 96.5" & \(211^{\circ}\) & 2012,817 & 2 & No change \\
\hline ENG 11 & 03h 07.7 & \(36^{\circ} 37\) & 7.5/9.2 & 132.5" & \(260^{\circ}\) & 2012,817 & 2 & See text \\
\hline STFA 6 & 03h 09.2 & \(07^{\circ} 28\) & 7.7/7.8 & 80.9" & \(164^{\circ}\) & 2012,817 & 2 & No change \\
\hline
\end{tabular}

Table 1 concludes on next page.

\section*{Measuring Double Stars with Position Circle and Filar Micrometer Screw: Report \#2}

Table 1 (conclusion). Measurements of Double Stars Measured in 2012.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Name & RA & Dec & mag 1/2 & rho & theta & Date & N & Remarks \\
\hline ENG 12AB & 03h 10.9 & \(-11^{\circ} 08\) & 7.3/8.6 & 143.1" & \(50.5^{\circ}\) & 2012.875 & 2 & \[
\begin{aligned}
& \text { P~1" under v.r. } \\
& \theta_{\downarrow} \text { confirming trend }
\end{aligned}
\] \\
\hline ENG 13AB-C & 03h 15.1 & \(16^{\circ} 18\) & 8.9/8.5 & 172.2" & \(185^{\circ}\) & 2012.875 & 2 & ```
P 1.5" under v.r.
matches \downarrow trend. \Theta 1 }\mp@subsup{}{}{\circ
under v.r. against
trend.
``` \\
\hline STT 557AB & 03h 19.4 & \(03^{\circ} 22\) & 4.9/8.9 & 263.6" & \(164.5^{\circ}\) & 2012.875 & 2 & \(\Theta\) consistent; \({ }^{\prime \prime}\) " under v.r., but matches \(\downarrow\) trend \\
\hline STT 54AB & 03h 32.0 & \(67^{\circ} 35\) & 7.7/9.0 & 20.9" & \(1^{\circ}\) & 2012.872 & 2 & \(\Theta\) no change; \(\rho\) 1" under v.r., matches \(\downarrow t r e n d\) \\
\hline BU 1231AC & 03h 43.7 & \(65^{\circ} 59\) & 7.9/8.8 & 87.6" & \(260.5^{\circ}\) & 2012.872 & 2 & ```
P no change;0 increased
1.5* against }200
measure, confirming
trend
``` \\
\hline STTA 38AB & 03h 44.6 & \(27^{\circ} 54\) & \(6.8 / 6.9\) & 134.7" & \(52^{\circ}\) & 2012.875 & 2 & \(\Theta\) no change; \(\rho 1.5^{\prime \prime}\) under v.r. \\
\hline S \(437 \mathrm{AB}-\mathrm{C}\) & 03h 46.3 & \(24^{\circ} 11\) & 8.1/7.7 & 38.2" & \(308^{\circ}\) & 2012.875 & 2 & Quite consistent \\
\hline BUP 45AC & 03h 55.6 & \(42^{\circ} 53\) & 7.5/8.0 & 176.7" & \(90^{\circ}\) & 2012.872 & 2 & \(\Theta\) no change; \(\rho 2^{\prime \prime}\) under v.r., but consistent with \(\downarrow\) trend \\
\hline BUP 49 & 04h 00.8 & \(18^{\circ} 12\) & 5.9/9.1 & 174.7" & \(275.5^{\circ}\) & 2012.872 & 2 & \(\Theta 1.5^{\circ}\) under v.r; \(\rho\) no change \\
\hline S 738 AB & 20h 10.6 & \(33^{\circ} 38\) & 7.8/8.4 & 41.8" & \(104^{\circ}\) & 2012.886 & 2 & \[
\begin{aligned}
& \text { P no change; } \theta 2^{\circ} \text { under } \\
& \text { v.r. }
\end{aligned}
\] \\
\hline ENG 72AB & 20h 14.5 & \(36^{\circ} 48\) & \(5.0 / 6.7\) & 213.4" & \(155^{\circ}\) & 2012.886 & 2 & \(\Theta\) no change; \(\rho 2^{\prime \prime}\) under v.r., against \(\uparrow\) trend \\
\hline STF2708AB & 20h 38.7 & \(38^{\circ} 38\) & \(6.8 / 8.7\) & 56.5" & \(323^{\circ}\) & 2012.886 & 2 & No change \\
\hline ENG 77AC & 20h 56.8 & \(42^{\circ} 54\) & 7.3/9.1 & 125.8" & \(17^{\circ}\) & 2012.889 & 2 & P increased 2.2" against 2003 measure, \(\theta\) increased \(2^{\circ}\). Both with \(\uparrow\) trends. \\
\hline STF2758AB & 21h 06.9 & \(38^{\circ} 45\) & 5.4/6.1 & \(31.6 "\) & \(151^{\circ}\) & 2012.889 & 2 & Quite no change \\
\hline ARN 78 & 21h 31.4 & \(48^{\circ} 29\) & 7.6/8.8 & 51.6" & \(99^{\circ}\) & 2012.889 & 2 & \(\Theta\) no change; \(\rho \sim 2^{\prime \prime}\) over v.r., but matches \(\uparrow\) trend \\
\hline S 799AB & 21h 43.4 & \(38^{\circ} 17\) & \(5.7 / 7.0\) & 147.9" & \(60^{\circ}\) & 2012.886 & 2 & \(\Theta\) no change; \(\rho 2^{\prime \prime}\) under v.r., matches \(\downarrow\) trend \\
\hline ARN 24AC & 22h 25.8 & \(-20^{\circ} \quad 14\) & \(6.7 / 8.0\) & 127.7" & \(89.5^{\circ}\) & 2012.801 & 2 & No change \\
\hline WEB 10AB & 23h 38.6 & \(44^{\circ} 41\) & 8.3/8.8 & 128" & \(304^{\circ}\) & 2012.722 & 2 & No change \\
\hline STF3041AC & 23h 47.9 & \(17^{\circ} 03\) & 8.4/9.2 & 60.7 " & \(358.5^{\circ}\) & 2012.722 & 2 & No change \\
\hline STF3041AB & 23h 47.9 & \(17^{\circ} 03\) & 8.4/9.1 & 57" & \(358.5^{\circ}\) & 2012.722 & 2 & No change \\
\hline STF3044 & 23h 53.0 & \(11^{\circ} 55\) & 7.3/7.9 & \(20 "\) & \(283.2^{\circ}\) & 2012.722 & 2 & No change \\
\hline STTA251AB & 23h 53.6 & \(51^{\circ} 31\) & 6.9/9.1 & 48" & \(209.5^{\circ}\) & 2012.722 & 2 & P no change; \(\theta 1.5^{\circ}\) over v.r, , matches \(\uparrow\) trend \\
\hline HO 205AD & 23h 54.1 & \(39^{\circ} 17\) & \(6.7 / 9.4\) & 122.7" & \(215.5^{\circ}\) & 2012.722 & 2 & No change \\
\hline ARY 33 & 23h 59.2 & \(50^{\circ} 32\) & 7.3/8.1 & 99.6" & \(140^{\circ}\) & 2012.722 & 2 & No change \\
\hline
\end{tabular}

\section*{Measuring Double Stars with Position Circle and Filar Micrometer Screw: Report \#2}


Figure 3. Dependence between separation and quota diverging measures of rho.
diverging results increases as distance grows. Figure 3 shows the percent of "divergers" and more clearly shows the connection.

Taking into account all these considerations, I came to the conclusion that the reason for the discrepancies in separation measurements is not a subjective one, but has its cause in the action of the micrometer screw. With typical low harvest and winter-season temperatures here on the mountain-sides, the mechanics become slow reacting, almost as if they have to "go a longer way". In my opinion, decreasing viscosity of lubrication plays a major role in this. This corresponds also with the fact that the deviations manifest in most cases in lower results than to be expected. I will keep an eye on this in the future.

As concerns the qualitative aspect of the issue discussed, I must say that the typical difference between my results and the presumably correct values ranges in general around 2 ". With respect to the fact that the deviations are to be found mostly in the measures of distances \(>150\) ", one must consider that these discrepancies give an erroneous ratio of almost \(2 \%\). This makes
the results obtained usable, but one should consider the fact. Furthermore, it seems remarkable that the relative results in most cases are reported if they adhere to the reported trend; results that go against the reported trend are hard to find.

Some words on ENG11 at 03h07.7+36 \({ }^{\circ} 37\) : I observed this pair October 25, 2012 and found it with a separation of \(132.5 "(\sigma=0.9 ")\) and position angle \(260^{\circ}\). The latter diverged from the WDS value by more than \(9^{\circ}\) ! I tended to believe this to be an erroneous measure on my part, because the sigma was negligibly small, and because the other measures that night were quite in the range of given values to be expected. Then, I found in the JDSO an article by R. Nugent and E. Iverson[2] in which their result on ENG11 - obtained with better and more sophisticated methods than my own - was consistent with my PA measure from 2012 and suggests that the entry in the WDS is erroneous.

\section*{Acknowledgements:}

Gianluca Sordiglioni maintains a useful tool with his website: http://stelledoppie.goaction.it, that gives fast and complex information on double stars. Thanks for that!

This project has made use of the Washington Double Star Catalog maintained at the U.S. Naval Observatory.

\section*{References}
[1] Korn, Robert, "Measuring Binaries with PositionCircle and Filar Micrometer-Screw", JDSO, 10, 174, 2014.
[2] Nugent, Richard and Ernest Iverson, "Double Star Measures Using the Video Drift Method", JDSO, 11, 21, 2015.

\title{
Double Star Observations with a 150mm Refractor in 2014
}

\author{
Marc Oliver Maiwald \\ Witten, Germany \\ oliver-maiwald@web.de
}

\begin{abstract}
In the following article, 166 observations of 84 doubles made with a 150 mm refractor in 2014 are presented. Residuals were calculated for selected pairs.
\end{abstract}

For all observations in 2014, a 150 mm folded refractor with filter 11 (yellow - green) was used. Cameras used were the Imaging Source DMK 21 and the Phillips SPC 900 NC ( NC in Table 1). As in previous years, teleconverters 1,4 (TK1,4 in Table 1) and 2x (TK2 in Table 1) were used for pairs with smaller separations. Wider pairs were observed at direct focus (f in Table 1). The observing technique was the same as described in Maiwald (2013) and Maiwald (2014).

The image scales with the DMK 21 are:
f: 0.384 a.s. per pixel
TK 1.4: 0.297322 a.s. per pixel
TK 2: 0.19876 a.s. per pixel
For the SPC 900 NC with TK2, the image scale was determined to be 0.2091 a.s. per pixel.

For some of the measured pairs, weighted averages were calculated and compared with the ephemeris. Calculation was done with Binary Star Calculator (Workman, 2013) using data from the "Sixth Catalog of Orbits of Visual Binary Stars". The residuals are listed in Table 2.

As exemplified by the measurements of STF 73, STF 1196 AB, and STF 1338 (see remarks 1, 4, and 5 to Table 2 and Maiwald, 2014, p. 191), the error in \(\theta\) for small distances can be rather large. A detailed discussion of the errors in double star measurements with Reduc can be found in Napier-Munn and Jenkinson (2014).

\section*{Acknowledgements}

This paper made extensive use of the Washington Double Star Catalog and the Sixth Catalog of Orbits of Visual Binary Stars, both maintained at the U.S. Naval Observatory. Noncommercial software used was: Binary Star Calculator by Brian Workman; Reduc 3.88 by Florent Losse, Registax 4 by Cor Berrevoets and SharpCap by Robin Glover.

\section*{References}

Alzner, Andreas, "Micrometer Measurements from 2006.21 to 2008.12", The Webb Society Double Star Section Circular No. 16, 2008, 7-15. http://www.webbdeepsky.com/
Argyle, Bob, "Micrometer measurements from 2006.0 to 2007.0", The Webb Society Double Star Section Circular No. 15, 2007, 1 - 6. http://www.webbdeepsky.com/

Argyle, Bob, "Micrometer measures of double stars in 2012", The Webb Society Double Star Section Circular No. 21, 2013, \(1-4\). http://www.webbdeepsky.com/
Argyle, Bob, "Micrometer measures of double stars in 2014", The Webb Society Double Star Section Circular No. 22, 2014, 1 - 4 . http://www.webbdeepsky.com/

\section*{Double Star Observations with a 150mm Refractor in 2014}

Table 1. Double star observations in 2014
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Designation & WDS ident & \(\theta\) & \(\rho\) & Date & No & Name & Notes \\
\hline STF 60AB & 00491+5749 & \[
\begin{aligned}
& 324.3 \\
& 324 \\
& 324.3 \\
& 324.3
\end{aligned}
\] & \[
\begin{aligned}
& 13.25 \\
& 12.78 \\
& 12.9 \\
& 12.78
\end{aligned}
\] & \[
\begin{aligned}
& 2014.751 \\
& 2014.757 \\
& 2014.784 \\
& 2014.834
\end{aligned}
\] & \[
\begin{aligned}
& 43 \\
& 35 \\
& 26 \\
& 32
\end{aligned}
\] & \(\eta\) Cas & \[
\begin{array}{ll}
\hline \text { TK2; } & \text { NC } \\
\text { TK2 } & \\
\text { TK2 } & \\
\text { TK2 } &
\end{array}
\] \\
\hline STF 73AB & 00550+2338 & \[
\begin{aligned}
& 326.3 \\
& 327.5 \\
& 328.9
\end{aligned}
\] & \[
\begin{aligned}
& 1.1 \\
& 1.08 \\
& 0.96
\end{aligned}
\] & \[
\begin{aligned}
& 2014.836 \\
& 2014.861 \\
& 2014.869
\end{aligned}
\] & \[
\begin{aligned}
& 41 \\
& 66 \\
& 82
\end{aligned}
\] & 36 And & \[
\begin{aligned}
& \text { TK2 } \\
& \text { TK2 } \\
& \text { TK2 }
\end{aligned}
\] \\
\hline H 5 12AB & 01579+2336 & 47.5 & 37.41 & 2014.007 & 44 & \(\lambda\) Ari & TK1,4 \\
\hline STF 262AB & 02291+6724 & \[
\begin{aligned}
& 229.7 \\
& 228.6
\end{aligned}
\] & \[
\begin{aligned}
& 2.67 \\
& 2.69
\end{aligned}
\] & \[
\begin{aligned}
& 2014.773 \\
& 2014.784
\end{aligned}
\] & \[
\begin{aligned}
& 35 \\
& 41
\end{aligned}
\] & 1 Cas & \[
\begin{aligned}
& \text { TK2 } \\
& \text { TK2 }
\end{aligned}
\] \\
\hline STF 262AC & 02291+6724 & \[
\begin{aligned}
& 115.5 \\
& 115.9
\end{aligned}
\] & \[
\begin{aligned}
& 6.99 \\
& 7.02
\end{aligned}
\] & \[
\begin{aligned}
& 2014.773 \\
& 2014.784
\end{aligned}
\] & \[
\begin{aligned}
& 32 \\
& 31
\end{aligned}
\] & 1 Cas & \[
\begin{aligned}
& \text { TK2 } \\
& \text { TK2 }
\end{aligned}
\] \\
\hline STF 299 & 02433+0314 & \[
\begin{aligned}
& 298.2 \\
& 299
\end{aligned}
\] & \[
\begin{aligned}
& 2.04 \\
& 1.91
\end{aligned}
\] & \[
\begin{aligned}
& 2014.910 \\
& 2014.954
\end{aligned}
\] & \[
\begin{array}{r}
98 \\
127
\end{array}
\] & Y Cet & \[
\begin{aligned}
& \text { TK2 } \\
& \text { TK2 }
\end{aligned}
\] \\
\hline STF 559 & 04335+1801 & \[
\begin{aligned}
& 277.6 \\
& 277.2
\end{aligned}
\] & \[
\begin{aligned}
& 2.99 \\
& 3.11
\end{aligned}
\] & \[
\begin{aligned}
& 2014.157 \\
& 2014.165
\end{aligned}
\] & \[
\begin{aligned}
& 31 \\
& 27
\end{aligned}
\] & & \[
\begin{aligned}
& \text { TK2 } \\
& \text { TK1,4 }
\end{aligned}
\] \\
\hline STF 572AB & 04385+2656 & 8.6 & 4.35 & 2014.097 & 36 & & TK1,4 \\
\hline STF 616 & \(04593+3753\) & 4.6 & 4.75 & 2014.061 & 36 & \(\omega\) Aur & TK1, 4 \\
\hline STF 644AB & 05103+3718 & 222.6 & 1.47 & 2014.012 & 25 & & TK1,4 \\
\hline STF 653AC & 05154+3421 & 224.6 & 14.23 & 2014.012 & 39 & 14 Aur & TK1,4 \\
\hline STF 698AB & 05252+3451 & 347.2 & 31.26 & 2014.968 & 29 & & f \\
\hline STF 716AB & \(05293+2509\) & \[
\begin{aligned}
& 208.9 \\
& 208.7
\end{aligned}
\] & \[
\begin{aligned}
& 4.77 \\
& 4.76
\end{aligned}
\] & \[
\begin{aligned}
& 2014.081 \\
& 2014.097
\end{aligned}
\] & \[
\begin{aligned}
& 36 \\
& 37
\end{aligned}
\] & 118 Tau & TK1, 4 \\
\hline STF 742 & 05364+2200 & \[
\begin{aligned}
& 273.8 \\
& 272.7
\end{aligned}
\] & \[
\begin{aligned}
& 4.18 \\
& 3.94
\end{aligned}
\] & \[
\begin{aligned}
& 2014.097 \\
& 2014.157
\end{aligned}
\] & \[
\begin{aligned}
& 34 \\
& 18
\end{aligned}
\] & & \[
\begin{aligned}
& \text { TK1, } 4 \\
& \text { TK2 }
\end{aligned}
\] \\
\hline STF 845 & 06116+4843 & 358.3 & 7.56 & 2014.061 & 36 & 41 Aur & TK1,4 \\
\hline STF 958AB & \(06482+5542\) & 256.6 & 4.55 & 2014.226 & 16 & & TK1, 4 \\
\hline STF 982AB & \(06546+1311\) & \[
\begin{aligned}
& 143.2 \\
& 143.5
\end{aligned}
\] & \[
\begin{aligned}
& 7.38 \\
& 7.33
\end{aligned}
\] & \[
\begin{aligned}
& 2014.13 \\
& 2014.144
\end{aligned}
\] & \[
\begin{aligned}
& 41 \\
& 35
\end{aligned}
\] & 38 Gem & TK1, 4 \\
\hline STF1062AB & \(07229+5517\) & 315.8 & 14.97 & 2014.226 & 47 & 19 Lyn & TK1, 4 \\
\hline STF1083 & 07256+2030 & 45.5 & 6.76 & 2014.13 & 32 & & TK1, 4 \\
\hline STF1110AB & 07346+3153 & \[
\begin{aligned}
& 55.2 \\
& 55 \\
& 55.2
\end{aligned}
\] & \[
\begin{aligned}
& 5.03 \\
& 5.02 \\
& 5
\end{aligned}
\] & \[
\begin{aligned}
& 2014.13 \\
& 2014.144 \\
& 2014.152
\end{aligned}
\] & \[
\begin{aligned}
& 36 \\
& 45 \\
& 39
\end{aligned}
\] & \(\alpha\) Gem &  \\
\hline STF1196AB & 08122+1739 & \[
\begin{aligned}
& 25 \\
& 24 \\
& 25.7 \\
& 22.1
\end{aligned}
\] & \[
\begin{aligned}
& 1.06 \\
& 1.08 \\
& 1.05 \\
& 1.1
\end{aligned}
\] & \[
\begin{aligned}
& 2014.168 \\
& 2014.171 \\
& 2014.176 \\
& 2014.179
\end{aligned}
\] & \[
\begin{aligned}
& 39 \\
& 53 \\
& 38 \\
& 38
\end{aligned}
\] & \(\zeta \mathrm{Cnc}\) & \begin{tabular}{l}
TK2 \\
TK2 \\
TK2 \\
TK2
\end{tabular} \\
\hline STF1196AC & 08122+1739 & \[
\begin{aligned}
& 62.6 \\
& 62.7 \\
& 62.6 \\
& 62.6
\end{aligned}
\] & \[
\begin{aligned}
& 6.29 \\
& 6.28 \\
& 6.27 \\
& 6.26
\end{aligned}
\] & \[
\begin{aligned}
& 2014.168 \\
& 2014.171 \\
& 2014.176 \\
& 2014.179
\end{aligned}
\] & \[
\begin{aligned}
& 42 \\
& 72 \\
& 38 \\
& 32
\end{aligned}
\] & \(\zeta\) Cnc & \begin{tabular}{l}
TK2 \\
TK2 \\
TK2 \\
TK2
\end{tabular} \\
\hline STF1223 & \(08268+2656\) & 218.4 & 5.24 & 2014.179 & 31 & \(\Phi^{2} \mathrm{Cnc}\) & f \\
\hline STF1268 & \(08467+2846\) & 307.6 & 30.55 & 2014.168 & 36 & 1 Cnc & f \\
\hline STF1282 & 08508+3504 & 279.9 & 3.55 & 2014.223 & 25 & & TK1,4 \\
\hline STF1291 & 08542+3035 & \[
\begin{aligned}
& 310.1 \\
& 312.4
\end{aligned}
\] & \[
\begin{aligned}
& 1.46 \\
& 1.45
\end{aligned}
\] & \[
\begin{aligned}
& 2014.176 \\
& 2014.179
\end{aligned}
\] & \[
\begin{aligned}
& 32 \\
& 28
\end{aligned}
\] & 57 Cnc & \[
\begin{aligned}
& \text { TK2 } \\
& \text { TK2 }
\end{aligned}
\] \\
\hline STF1333 & 09184+3522 & \[
\begin{aligned}
& 50.4 \\
& 50
\end{aligned}
\] & \[
\begin{aligned}
& 1.88 \\
& 1.86
\end{aligned}
\] & \[
\begin{aligned}
& 2014.231 \\
& 2014.291
\end{aligned}
\] & \[
\begin{aligned}
& 30 \\
& 11
\end{aligned}
\] & & \[
\begin{aligned}
& \text { TK2 } \\
& \text { TK2 }
\end{aligned}
\] \\
\hline
\end{tabular}

Table 1 continues on the next page.

\section*{Double Star Observations with a 150mm Refractor in 2014}

Table 1 (continued). Double star observations in 2014
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Designation & WDS ident & \(\theta\) & \(\rho\) & Date & No & Name & Notes \\
\hline STF1334AB & 09188+3648 & \[
\begin{aligned}
& 223.8 \\
& 223.6
\end{aligned}
\] & \[
\begin{aligned}
& \hline 2.52 \\
& 2.54
\end{aligned}
\] & \[
\begin{aligned}
& 2014.231 \\
& 2014.291
\end{aligned}
\] & \[
\begin{aligned}
& 37 \\
& 39
\end{aligned}
\] & & \[
\begin{aligned}
& \text { TK2 } \\
& \text { TK2 }
\end{aligned}
\] \\
\hline STF1338AB & 09219+3811 & \[
\begin{aligned}
& 310.5 \\
& 308.2 \\
& 309.9 \\
& 306.7 \\
& 309
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1.07 \\
& 1.1 \\
& 1.06 \\
& 1.05
\end{aligned}
\] & \[
\begin{aligned}
& 2014.226 \\
& 2014.231 \\
& 2014.283 \\
& 2014.291 \\
& 2014.338
\end{aligned}
\] & \[
\begin{aligned}
& 27 \\
& 43 \\
& 11 \\
& 41 \\
& 44
\end{aligned}
\] & & \begin{tabular}{l}
TK2 \\
TK2 \\
TK2 \\
TK2 \\
TK2
\end{tabular} \\
\hline STF1424AB & 10200+1950 & 127.1 125.8 126.1 & \[
\begin{aligned}
& 4.8 \\
& 4.79 \\
& 4.72
\end{aligned}
\] & \[
\begin{aligned}
& 2014.223 \\
& 2014.239 \\
& 2014.242
\end{aligned}
\] & \[
\begin{aligned}
& 30 \\
& 35 \\
& 78
\end{aligned}
\] & \(\gamma\) Leo &  \\
\hline STF1487 & \(10556+2445\) & 112.3 & 6.62 & 2014.25 & 45 & 54 Leo & TK1, 4 \\
\hline STFA 19 & \(11279+0251\) & 181.7 & 88.49 & 2014.3 & 16 & \(\tau\) Leo & f \\
\hline STF1523AB & \(11182+3132\) & \[
\begin{aligned}
& 179.3 \\
& 179.3
\end{aligned}
\] & \[
\begin{aligned}
& 1.69 \\
& 1.68
\end{aligned}
\] & \[
\begin{aligned}
& 2014.365 \\
& 2014.376
\end{aligned}
\] & \[
\begin{aligned}
& 82 \\
& 38
\end{aligned}
\] & \(\xi\) Uma & \[
\begin{aligned}
& \text { TK2 } \\
& \text { TK2 }
\end{aligned}
\] \\
\hline STF1670AB & 12417-0127 & \[
\begin{aligned}
& 8.6 \\
& 7.5 \\
& 6.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 2.08 \\
& 2.07 \\
& 2.07 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 2014.338 \\
& 2014.365 \\
& 2014.373
\end{aligned}
\] & \[
\begin{aligned}
& 36 \\
& 47 \\
& 62
\end{aligned}
\] & Y Vir & \[
\begin{aligned}
& \text { TK2 } \\
& \text { TK2 } \\
& \text { TK2 }
\end{aligned}
\] \\
\hline STT 261 & \(13120+3205\) & \[
\begin{aligned}
& 337.8 \\
& 337.6
\end{aligned}
\] & \[
\begin{aligned}
& 2.56 \\
& 2.53
\end{aligned}
\] & \[
\begin{aligned}
& 2014.382 \\
& 2014.393
\end{aligned}
\] & \[
\begin{aligned}
& 36 \\
& 33
\end{aligned}
\] & & \[
\begin{aligned}
& \text { TK2 } \\
& \text { TK2 }
\end{aligned}
\] \\
\hline STF1768AB & \(13375+3618\) & \begin{tabular}{l}
95.2 \\
95.6 \\
95.2
\end{tabular} & \[
\begin{aligned}
& 1.7 \\
& 1.67 \\
& 1.67
\end{aligned}
\] & \[
\begin{aligned}
& 2014.379 \\
& 2014.382 \\
& 2014.393
\end{aligned}
\] & \[
\begin{aligned}
& 46 \\
& 42 \\
& 53
\end{aligned}
\] & 25 CVn & \[
\begin{aligned}
& \text { TK2 } \\
& \text { TK2 } \\
& \text { TK2 }
\end{aligned}
\] \\
\hline STF1864AB & \(14407+1625\) & \[
\begin{aligned}
& 111.2 \\
& 111.1
\end{aligned}
\] & \[
\begin{aligned}
& 5.31 \\
& 5.34
\end{aligned}
\] & \[
\begin{aligned}
& 2014.412 \\
& 2014.417
\end{aligned}
\] & \[
\begin{aligned}
& 37 \\
& 43
\end{aligned}
\] & п Воо & \[
\begin{aligned}
& \text { TK2 } \\
& \text { TK2 }
\end{aligned}
\] \\
\hline STF1877AB & \(14450+2704\) & \[
\begin{aligned}
& 343.1 \\
& 343.4
\end{aligned}
\] & \[
\begin{aligned}
& 2.76 \\
& 2.9
\end{aligned}
\] & \[
\begin{aligned}
& 2014.42 \\
& 2014.428
\end{aligned}
\] & \[
\begin{aligned}
& 57 \\
& 28
\end{aligned}
\] & \(\varepsilon \mathrm{Boo}\) & \[
\begin{aligned}
& \text { TK2 } \\
& \text { TK2 }
\end{aligned}
\] \\
\hline STF1888AB & \(14514+1906\) & \[
\begin{aligned}
& 303.1 \\
& 303.7
\end{aligned}
\] & \[
\begin{aligned}
& 5.59 \\
& 5.58
\end{aligned}
\] & \[
\begin{aligned}
& 2014.395 \\
& 2014.412
\end{aligned}
\] & \[
\begin{aligned}
& 43 \\
& 43
\end{aligned}
\] & \(\xi \mathrm{BoO}\) & \[
\begin{aligned}
& \text { TK2 } \\
& \text { TK2 }
\end{aligned}
\] \\
\hline STT 288 & \(14534+1542\) & \[
\begin{aligned}
& 159.1 \\
& 159.7
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 0.98
\end{aligned}
\] & \[
\begin{aligned}
& 2014.412 \\
& 2014.417
\end{aligned}
\] & \[
\begin{aligned}
& 36 \\
& 43
\end{aligned}
\] & & \[
\begin{aligned}
& \text { TK2 } \\
& \text { TK2 }
\end{aligned}
\] \\
\hline STF1909 & \(15038+4739\) & \[
\begin{aligned}
& 65.7 \\
& 66.2 \\
& 65.4 \\
& 64.9
\end{aligned}
\] & \[
\begin{aligned}
& 1.04 \\
& 1.01 \\
& 1.03 \\
& 1.11
\end{aligned}
\] & \[
\begin{aligned}
& 2014.393 \\
& 2014.395 \\
& 2014.412 \\
& 2014.42
\end{aligned}
\] & \[
\begin{aligned}
& 84 \\
& 60 \\
& 32 \\
& 77
\end{aligned}
\] & 44 Boo & \[
\begin{aligned}
& \text { TK2 } \\
& \text { TK2 } \\
& \text { TK2 } \\
& \text { TK2 }
\end{aligned}
\] \\
\hline STF1919 & \(15127+1917\) & 10.5 & 23.22 & 2014.445 & 41 & & f \\
\hline STF1932AB & \(15183+2650\) & \[
\begin{aligned}
& 264.1 \\
& 264
\end{aligned}
\] & \[
\begin{aligned}
& 1.59 \\
& 1.56
\end{aligned}
\] & \[
\begin{aligned}
& 2014.431 \\
& 2014.437
\end{aligned}
\] & \[
\begin{aligned}
& 26 \\
& 25
\end{aligned}
\] & & \[
\begin{aligned}
& \text { TK2 } \\
& \text { TK2 }
\end{aligned}
\] \\
\hline STF1938BC & \(15245+3723\) & \[
\begin{aligned}
& 4.4 \\
& 3.9
\end{aligned}
\] & \[
\begin{aligned}
& 2.18 \\
& 2.17
\end{aligned}
\] & \[
\begin{aligned}
& 2014.42 \\
& 2014.428
\end{aligned}
\] & \[
\begin{aligned}
& 44 \\
& 45
\end{aligned}
\] & \(\mu \mathrm{Boo}\) & \[
\begin{aligned}
& \text { TK2 } \\
& \text { TK2 }
\end{aligned}
\] \\
\hline STF2032AB & \(16147+3352\) & \[
\begin{aligned}
& 238.1 \\
& 238.3
\end{aligned}
\] & \[
\begin{aligned}
& 6.98 \\
& 6.96 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 2014.431 \\
& 2014.437
\end{aligned}
\] & \[
\begin{aligned}
& 34 \\
& 36 \\
& \hline
\end{aligned}
\] & \(\sigma \mathrm{CrB}\) & \[
\begin{aligned}
& \text { TK2 } \\
& \text { TK2 }
\end{aligned}
\] \\
\hline STF2054AB & \(16238+6142\) & \[
\begin{aligned}
& 350.7 \\
& 350.1
\end{aligned}
\] & \[
\begin{aligned}
& 0.92 \\
& 1.01 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 2014.448 \\
& 2014.456
\end{aligned}
\] & \[
\begin{aligned}
& 80 \\
& 92
\end{aligned}
\] & & TK2 \\
\hline STF2118AB & \(16564+6502\) & \[
\begin{aligned}
& 64.6 \\
& 66.5
\end{aligned}
\] & \[
\begin{aligned}
& 0.94 \\
& 0.91
\end{aligned}
\] & \[
\begin{aligned}
& 2014.475 \\
& 2014.478
\end{aligned}
\] & \[
\begin{aligned}
& 24 \\
& 81
\end{aligned}
\] & 20 Dra & TK2 \\
\hline STF2130AB & \(17053+5428\) & \[
\begin{aligned}
& 5.7 \\
& 3.8 \\
& 4.1 \\
& 3.8
\end{aligned}
\] & \[
\begin{aligned}
& 2.41 \\
& 2.43 \\
& 2.44 \\
& 2.42
\end{aligned}
\] & \[
\begin{aligned}
& 2014.475 \\
& 2014.478 \\
& 2014.483 \\
& 2014.486
\end{aligned}
\] & \[
\begin{aligned}
& 65 \\
& 60 \\
& 28 \\
& 69
\end{aligned}
\] & \(\mu\) Dra & TK2 \\
\hline STF2140 & \(17146+1423\) & \[
\begin{aligned}
& 103.6 \\
& 103.2
\end{aligned}
\] & \[
\begin{aligned}
& 4.64 \\
& 4.61
\end{aligned}
\] & \[
\begin{aligned}
& 2014.500 \\
& 2014.505
\end{aligned}
\] & \[
\begin{aligned}
& 44 \\
& 38
\end{aligned}
\] & \(\alpha\) Her & TK2 \\
\hline STF2161AB & \(17237+3709\) & \[
\begin{aligned}
& 320.4 \\
& 320.2
\end{aligned}
\] & \[
\begin{aligned}
& 3.95 \\
& 3.94
\end{aligned}
\] & \[
\begin{aligned}
& 2014.500 \\
& 2014.505
\end{aligned}
\] & \[
\begin{aligned}
& 44 \\
& 32 \\
& \hline
\end{aligned}
\] & \(p\) Her & TK2 \\
\hline
\end{tabular}

Table 1 concludes on the next page.

\title{
Double Star Observations with a 150mm Refractor in 2014
}

Table 1 (conclusion). Double star observations in 2014
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Designation & WDS ident & \(\theta\) & \(\rho\) & Date & No & Name & Notes \\
\hline STFA 34AB & 17346+0935 & 190.2 & 41.23 & 2014.546 & 42 & 53 Oph & f \\
\hline STF2194AB & \(17411+2431\) & 6.8 & 16.26 & 2014.546 & 36 & & f \\
\hline STF2272AB & 18055+0230 & \[
\begin{aligned}
& 126.4 \\
& 126.4
\end{aligned}
\] & \[
\begin{aligned}
& 6.04 \\
& 6.09
\end{aligned}
\] & \[
\begin{aligned}
& 2014.535 \\
& 2014.541
\end{aligned}
\] & \[
\begin{aligned}
& 72 \\
& 73
\end{aligned}
\] & 70 Oph & TK2 \\
\hline STF2276AB & \(18057+1200\) & 265.7 & 6.94 & 2014.56 & 39 & & TK1, 4 \\
\hline STF2289 & \(18101+1629\) & \[
\begin{aligned}
& 224.2 \\
& 223.6
\end{aligned}
\] & \[
\begin{aligned}
& 1.19 \\
& 1.2
\end{aligned}
\] & \[
\begin{aligned}
& 2014.500 \\
& 2014.505
\end{aligned}
\] & \[
\begin{aligned}
& 43 \\
& 52
\end{aligned}
\] & & TK2 \\
\hline STT 358AB & \(18359+1659\) & \[
\begin{aligned}
& 149.1 \\
& 148.9
\end{aligned}
\] & \[
\begin{aligned}
& 1.6 \\
& 1.59
\end{aligned}
\] & \[
\begin{aligned}
& 2014.541 \\
& 2014.543
\end{aligned}
\] & \[
\begin{aligned}
& 61 \\
& 29
\end{aligned}
\] & & TK2 \\
\hline STF2382AB & \(18443+3940\) & \[
\begin{aligned}
& 347.5 \\
& 346.8
\end{aligned}
\] & \[
\begin{aligned}
& 2.25 \\
& 2.21
\end{aligned}
\] & \[
\begin{aligned}
& 2014.464 \\
& 2014.483
\end{aligned}
\] & \[
\begin{aligned}
& 38 \\
& 41
\end{aligned}
\] & \(\varepsilon\) Lyr & TK2 \\
\hline STF2383CD & \(18443+3940\) & \[
\begin{aligned}
& 76.2 \\
& 77
\end{aligned}
\] & \[
\begin{aligned}
& 2.35 \\
& 2.33
\end{aligned}
\] & \[
\begin{aligned}
& 2014.464 \\
& 2014.483
\end{aligned}
\] & \[
\begin{aligned}
& 37 \\
& 41
\end{aligned}
\] & 5 Lyr & TK2 \\
\hline STFA 39AB & \(18501+3332\) & \[
\begin{aligned}
& 148.3 \\
& 148.3
\end{aligned}
\] & \[
\begin{aligned}
& 45.8 \\
& 45.72
\end{aligned}
\] & \[
\begin{aligned}
& 2014.543 \\
& 2014.557
\end{aligned}
\] & \[
\begin{aligned}
& 36 \\
& 26
\end{aligned}
\] & \(\beta\) Lyr & f \\
\hline STF2404 & 18508+1059 & 181.9 & 3.56 & 2014.56 & 46 & & TK1, 4 \\
\hline STTA178 & \(19153+1505\) & 266.9 & 89.84 & 2014.565 & 37 & & f \\
\hline STTA182AB & \(19268+5009\) & 297 & 73.22 & 2014.557 & 37 & & f \\
\hline STT 384AB & \(19438+3819\) & \[
\begin{aligned}
& 193.5 \\
& 195.5 \\
& 198
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 0.94 \\
& 1.07
\end{aligned}
\] & \[
\begin{aligned}
& 2014.568 \\
& 2014.582 \\
& 2014.601
\end{aligned}
\] & \[
\begin{aligned}
& 33 \\
& 30 \\
& 35 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& \text { TK2 } \\
& \text { TK2 } \\
& \text { TK2 }
\end{aligned}
\] \\
\hline STF2579AB & \(19450+4508\) & \[
\begin{aligned}
& 220 \\
& 217.9 \\
& 217.5
\end{aligned}
\] & \[
\begin{aligned}
& 2.6 \\
& 2.64 \\
& 2.63
\end{aligned}
\] & \[
\begin{aligned}
& 2014.568 \\
& 2014.582 \\
& 2014.601
\end{aligned}
\] & \[
\begin{aligned}
& 57 \\
& 67 \\
& 65
\end{aligned}
\] & \(\delta\) Cyg & \[
\begin{aligned}
& \text { TK2 } \\
& \text { TK2 } \\
& \text { TK2 }
\end{aligned}
\] \\
\hline STF2583AB & \(1948+1149\) & \[
\begin{aligned}
& 101.5 \\
& 101.3
\end{aligned}
\] & \[
\begin{aligned}
& 1.3 \\
& 1.37
\end{aligned}
\] & \[
\begin{aligned}
& 2014.535 \\
& 2014.543
\end{aligned}
\] & \[
\begin{aligned}
& 39 \\
& 39
\end{aligned}
\] & п Aql & TK2 \\
\hline STF2628 & 20078+0924 & 338.4 & 2.96 & 2014.565 & 44 & & TK1, 4 \\
\hline STFA 50AC & \(20136+4644\) & \[
\begin{aligned}
& 172.7 \\
& 172.7
\end{aligned}
\] & \[
\begin{aligned}
& 106.86 \\
& 106.81
\end{aligned}
\] & \[
\begin{aligned}
& 2014.557 \\
& 2014.587
\end{aligned}
\] & \[
\begin{aligned}
& 40 \\
& 33
\end{aligned}
\] & 31 Cyg & f \\
\hline STF2758AB & \(21069+3845\) & \[
\begin{aligned}
& 152.1 \\
& 152.2
\end{aligned}
\] & \[
\begin{aligned}
& 31.58 \\
& 31.58
\end{aligned}
\] & \[
\begin{aligned}
& 2014.587 \\
& 2014.645
\end{aligned}
\] & \[
\begin{aligned}
& 44 \\
& 44
\end{aligned}
\] & 61 Cyg & f \\
\hline STF2822AB & \(21441+2845\) & \[
\begin{aligned}
& 317.4 \\
& 317.9
\end{aligned}
\] & \[
\begin{aligned}
& 1.61 \\
& 1.58
\end{aligned}
\] & \[
\begin{aligned}
& 2014.645 \\
& 2014.647
\end{aligned}
\] & \[
\begin{aligned}
& 36 \\
& 42
\end{aligned}
\] & \(\mu \mathrm{Cyg}\) & TK2 \\
\hline STF2822AD & \(21441+2845\) & 43.4 & 197.09 & 2014.647 & 22 & \(\mu \mathrm{Cyg}\) & f \\
\hline S 799AB & \(21434+3817\) & 59.8 & 149.52 & 2014.645 & 40 & 79 Cyg & f \\
\hline STF2840 & \(21520+5548\) & 196.1 & 17.72 & 2014.688 & 40 & & f \\
\hline STF2873 & \(21582+8252\) & 65.7 & 13.88 & 2014.688 & 33 & & f \\
\hline STF2872AB & \(22086+5917\) & 315.6 & 21.61 & 2014.697 & 29 & & f \\
\hline STF2893 & \(22129+7318\) & 346.7 & 28.79 & 2014.697 & 38 & & f \\
\hline STFA 58AC & \(22292+5825\) & 191.2 & 40.65 & 2014.688 & 44 & \(\delta \mathrm{Cep}\) & f \\
\hline STF2947AB & \(22490+6834\) & \[
\begin{aligned}
& 55.5 \\
& 55.3
\end{aligned}
\] & \[
\begin{aligned}
& 4.51 \\
& 4.52
\end{aligned}
\] & \[
\begin{aligned}
& 2014.71 \\
& 2014.727
\end{aligned}
\] & \[
\begin{aligned}
& 29 \\
& 27
\end{aligned}
\] & & TK2 \\
\hline STTA238AB & \(22527+6759\) & \[
\begin{aligned}
& 280.3 \\
& 280.2
\end{aligned}
\] & \[
\begin{aligned}
& 66.74 \\
& 66.73
\end{aligned}
\] & \[
\begin{aligned}
& 2014.71 \\
& 2014.727
\end{aligned}
\] & \[
\begin{aligned}
& 37 \\
& 23
\end{aligned}
\] & & \[
\begin{aligned}
& \text { TK2 } \\
& \text { TK2 }
\end{aligned}
\] \\
\hline STF2950AB & \(22514+6142\) &  & \[
\begin{aligned}
& 1.18 \\
& 1.25 \\
& 1.23 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 2014.71 \\
& 2014.727 \\
& 2014.748
\end{aligned}
\] & \[
\begin{aligned}
& 44 \\
& 20 \\
& 30 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& \text { TK2 } \\
& \text { TK2 } \\
& \text { TK2 } \\
& \hline
\end{aligned}
\] \\
\hline STF2909 & 22288-0001 & \[
\begin{aligned}
& 164.5 \\
& 164.5
\end{aligned}
\] & \[
\begin{aligned}
& 2.23 \\
& 2.05
\end{aligned}
\] & \[
\begin{aligned}
& 2014.822 \\
& 2014.825
\end{aligned}
\] & \[
\begin{aligned}
& 98 \\
& 49
\end{aligned}
\] & \(\zeta\) Aqr & TK2 \\
\hline STF2978 & \(23075+3250\) & 144.7 & 8.04 & 2014.748 & 36 & & TK2 \\
\hline STF3042 & \(23519+3753\) & 86.9 & 5.47 & 2014.861 & 19 & & TK2 \\
\hline STF3049AB & \(23590+5545\) & \[
\begin{aligned}
& 325.9 \\
& 326.2
\end{aligned}
\] & \[
\begin{aligned}
& 3.17 \\
& 3.07
\end{aligned}
\] & \[
\begin{aligned}
& 2014.751 \\
& 2014.757
\end{aligned}
\] & \[
\begin{aligned}
& 46 \\
& 35
\end{aligned}
\] & \(\sigma\) Cas & \[
\begin{aligned}
& \text { TK2; NC } \\
& \text { TK2 }
\end{aligned}
\] \\
\hline STF3050AB & \(23595+3343\) & \[
\begin{aligned}
& 338.4 \\
& 338.8
\end{aligned}
\] & \[
\begin{aligned}
& 2.28 \\
& 2.31
\end{aligned}
\] & \[
\begin{aligned}
& 2014.836 \\
& 2014.861
\end{aligned}
\] & \[
\begin{aligned}
& 37 \\
& 33
\end{aligned}
\] & & \[
\begin{aligned}
& \text { TK2 } \\
& \text { TK2 }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Double Star Observations with a 150mm Refractor in 2014}

Table 2. Residuals for double stars in 2014
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Designation & WDS & Name & Date & \(\theta\) & p & \(\Delta \theta\) & \(\Delta \rho\) & Ref.; Notes \\
\hline STF 60 AB & 00491+5749 & \(\eta\) Cas & 2014.8 & 324.2 & 12.95 & 0.6 & -0.39 & Str1969a \\
\hline STF 73 AB & 00550+2338 & 36 And & 2014.9 & 327.8 & 1.03 & -1.3 & -0.09 & Mut2010b; 1 \\
\hline STF 262 AB & 02291+6724 & 1 Cas & 2014.8 & 229.1 & 2.68 & 1 & 0.06 & Hei1996b \\
\hline STF 742 & 05364+2200 & & 2014.1 & 273.4 & 4.1 & -2 & -0.04 & Hop1973b; 2 \\
\hline STF 958 AB & 06482+5542 & & 2014.2 & 256.6 & 4.55 & -0.4 & 0.01 & Kis2009 \\
\hline STF 958 AB & \(06482+5542\) & & 2014.2 & 256.6 & 4.55 & 0.1 & 0.08 & Kis2009 \\
\hline STF 982 AB & \(06546+1311\) & 38 Gem & 2014.1 & 143.3 & 7.36 & 2 & 0.14 & Hop1952; 3 \\
\hline STF 1110 AB & \(07346+3153\) & \(\alpha\) Gem & 2014.1 & 55.1 & 5.02 & \[
\begin{array}{r}
-0.2 \\
0.3
\end{array}
\] & \[
\begin{aligned}
& 0.03 \\
& 0.07
\end{aligned}
\] & Heil988a Doc1985c \\
\hline STF 1196 AB & 08122+1739 & \(\zeta \mathrm{Cnc}\) & 2014.2 & 24.2 & 1.07 & 1.4 & -0.04 & WSI2006b; 4 \\
\hline STF 1338 & 09219+3811 & & 2014.2 & 308.5 & 1.05 & -3.2 & 0.04 & Sca2002b; 5 \\
\hline STF 1424 AB & 10200+1950 & Y Leo & 2014.2 & 126.2 & 4.75 & 0.1 & 0.29 & Rab1958 \\
\hline STF 1523 AB & \(11182+3132\) & \(\xi\) Uma & 2014.4 & 179.3 & 1.69 & -1.3 & -0.05 & Msn1995 \\
\hline STF 1670 AB & 12417-0127 & Y Vir & 2014.4 & 7.4 & 2.07 & 0 & -0.11 & Sca2007c \\
\hline STT 261 & \(13120+3205\) & & 2014.4 & 337.7 & 2.55 & -0.8 & -0.03 & Kis2012 \\
\hline STF 1768 AB & \(13375+3618\) & 25 CVn & 2014.4 & 95.3 & 1.68 & 0 & -0.02 & Sod1999 \\
\hline STF 1888 AB & 14514+1906 & \(\xi \mathrm{BOO}\) & 2014.4 & 303.4 & 5.59 & -0.2 & -0.1 & Sod1999 \\
\hline STT 288 & 14534+1542 & & 2014.4 & 159.4 & 0.99 & 0.4 & -0.03 & Hei1998 \\
\hline STF 1909 & \(15038+4739\) & 44 Boo & 2014.4 & 65.5 & 1.05 & \[
\begin{aligned}
& 0 \\
& 0.2
\end{aligned}
\] & \[
\begin{array}{r}
0.05 \\
-0.07
\end{array}
\] & \[
\begin{aligned}
& \text { Sod1999 } \\
& \text { Zirm } 2010
\end{aligned}
\] \\
\hline STF 1932 AB & \(15183+2650\) & & 2014.4 & 264.1 & 1.58 & \[
\begin{aligned}
& -1.1 \\
& -0.9
\end{aligned}
\] & \[
\begin{array}{r}
0.06 \\
-0.04
\end{array}
\] & \[
\begin{aligned}
& \text { Hei1965c } \\
& \text { Sca2013b }
\end{aligned}
\] \\
\hline STF 1938 BC & \(15245+3723\) & \(\mu \mathrm{Boo}\) & 2014.4 & 4.2 & 2.17 & \[
\begin{aligned}
& 0.2 \\
& 0.4
\end{aligned}
\] & \[
\begin{aligned}
& -0.05 \\
& -0.07
\end{aligned}
\] & \[
\begin{aligned}
& \text { Sca2013a } \\
& \text { Sod1999 }
\end{aligned}
\] \\
\hline STF 2032 AB & \(16147+3352\) & \(\sigma \mathrm{CrB}\) & 2014.4 & 238.2 & 6.97 & \[
\begin{aligned}
& 0.1 \\
& 0.1
\end{aligned}
\] & \[
\begin{aligned}
& -0.21 \\
& -0.3
\end{aligned}
\] & \[
\begin{aligned}
& \text { Rag2009 } \\
& \text { Sca1979 }
\end{aligned}
\] \\
\hline STF 2118 AB & 16564+6502 & 20 Dra & 2014.5 & 66.1 & 0.92 & -0.8 & -0.23 & Sca2002d \\
\hline STF 2130 AB & \(17053+5428\) & \(\mu\) Dra & 2014.5 & 4.4 & 2.42 & 0.9 & -0.07 & Pru2012 \\
\hline STF 2140 AB & \(17146+1423\) & \(\alpha\) Her & 2014.5 & 103.4 & 4.63 & 0.3 & -0.01 & Baz1978 \\
\hline STF 2272 AB & 18055+0230 & 70 Oph & 2014.5 & 126.4 & 6.07 & 0.5 & -0.19 & Pxb2000b \\
\hline STF 2289 & 18101+1629 & & 2014.5 & 223.9 & 1.2 & 8 & -0.04 & Hop1964b; 6 \\
\hline STT 358AB & 18359+1659 & & 2014.5 & 149 & 1.6 & 2.2 & 0.09 & Hei1995; 7 \\
\hline STF 2382 AB & 18443+3940 & \(\varepsilon\) Lyr & 2014.5 & 347.1 & 2.23 & \[
\begin{aligned}
& 0.9 \\
& 0.9
\end{aligned}
\] & \[
\begin{aligned}
& -0.05 \\
& -0.12
\end{aligned}
\] & Nov \(2006 e\) WSI2004b \\
\hline STF 2383 CD & 18443+3940 & 5 Lyr & 2014.5 & 76.6 & 2.34 & 0.2 & -0.04 & Doc1984b \\
\hline STF 2579 AB & \(19450+4508\) & \(\delta\) Cyg & 2014.6 & 218.4 & 2.62 & 0.8 & -0.1 & Sca2012c \\
\hline STF 2758 AB & \(21069+3845\) & 61 Cyg & 2014.6 & 152.2 & 31.58 & \[
-0.6
\] & \[
\begin{array}{r}
0.05 \\
-0.02
\end{array}
\] & \[
\begin{aligned}
& \text { Pko2006b } \\
& \text { Kis1997 }
\end{aligned}
\] \\
\hline STF 2822 AB & 21441+2845 & \(\mu\) Cyg & 2014.6 & 317.7 & 1.59 & -3.0 & 0.03 & Hei1995; 8 \\
\hline STF 2909 & 22288-0001 & \(\zeta\) Aqr & 2014.8 & 164.5 & 2.17 & \[
\begin{aligned}
& -1.5 \\
& -0.7
\end{aligned}
\] & \[
\begin{aligned}
& -0.19 \\
& -0.07
\end{aligned}
\] & \[
\begin{aligned}
& \text { Hei 1984c; } 9 \\
& \text { Sca 2010c }
\end{aligned}
\] \\
\hline STF 3050AB & 23595+3343 & & 2014.8 & 338.6 & 2.29 & -0.8 & -0.07 & Hrt2011a \\
\hline
\end{tabular}

\section*{Table Notes.}
1. The large variations in \(\Delta \theta\) show the difficulties in measuring \(\theta\) for small separations. See Table 3.
2. Residuals for 2009.186 (Courtot, 2010, p.7): \(\Delta \theta-0,8\) and \(\Delta \rho-0,12\) and for 2008.08 (Alzner, 2008, p. 12): \(\Delta \theta-0.7\) and \(\Delta \rho-0.09\).
3. Argyle (2013, p. 3) \(\Delta \theta+4.3\) and \(\Delta \rho+0.03\) for 2012.216; Argyle (2008, p. 5) \(\Delta \theta+3.1\) and \(\Delta \rho+0.01\) for 2006.244; Courtot ( \(2010, \mathrm{p} .7) \Delta \theta+1.6\) and \(\Delta \rho+0.04\) for 2009.21 .
4. Measurements from 2010 to 2012 were published in Maiwald (2013) and for 2013 in Maiwald (2014). The great variation in \(\Delta \theta\) shows that the separation of the star is rather small for my telescope and location. See Table 4.
5. Residuals for my own measurements from 2010.3 to 2013.2 ( \(\Delta \theta\) all negative) can be found in (Maiwald, 2014, p. 191). (Argyle, 2014, p. 4): \(\Delta \theta-3.0\) and \(\Delta \rho+0.09\) for 2013.345 .
6. In (Maiwald, 2014, p.190f.) \(\Delta \theta 6.3\) for 2013.5 was reported.
7. Data for 2012 from Maiwald (2013, p. 193), for 2013 from Maiwald (2014, p. 190). Argyle (2013, p. 4): \(\Delta \theta+4.4\) and \(\Delta \rho+0.07\) for 2012.683. See Table 5.
8. Star is known for deviations from ephemeris. Residuals from 2010.6 to 2013.8 in Maiwald (2014, p. 191). Argyle (2014): \(\Delta \theta-3.4\) and \(\Delta \rho+0.18\) for 2013.538.
9. Residuals from 2010.8 to 2013.8 in Maiwald (2014, p. 191). Argyle (2014, p. 4): \(\Delta \theta-2.4\) and \(\Delta \rho+0.26\) for 2013.864 for the newer orbit.

\section*{Double Star Observations with a 150mm Refractor in 2014}

Table 3: Residuals for STF 73 from 2012.9 to 2014.9
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Designation & WDS & Nights & Date & \(\theta\) & م & \(\Delta \theta\) & \(\Delta \rho\) & Ref. \\
\hline \multirow{3}{*}{STF 73 AB} & \multirow{3}{*}{\(00550+2338\)} & 4 & 2012.9 & 326.5 & 1.13 & -0.3 & 0.04 & \multirow{3}{*}{Mut2010b} \\
\hline & & 4 & 2013.9 & 328.4 & 1.01 & 0.5 & -0.09 & \\
\hline & & 3 & 2014.9 & 327.8 & 1.03 & -1.3 & -0.09 & \\
\hline
\end{tabular}

Table 4: Residuals for STF 1196 from 2010.2 to 2014.2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Designation & WDS & Nights & Date & \(\theta\) & \(\rho\) & \(\Delta \theta\) & \(\Delta \rho\) & Ref. \\
\hline \multirow{5}{*}{STF 1196 AB} & \multirow{5}{*}{\(08122+1739\)} & 4 & 2010.2 & 38.3 & 1 & 1.3 & -0.06 & \multirow{5}{*}{WSI2006b} \\
\hline & & 2 & 2011.2 & 37.3 & 0.99 & 4 & -0.09 & \\
\hline & & 1 & 2012.2 & 32.4 & 1.04 & 2.6 & -0.05 & \\
\hline & & 2 & 2013.2 & 26.9 & 1.04 & 0.6 & -0.06 & \\
\hline & & 4 & 2014.2 & 24.2 & 1.07 & 1.4 & -0.04 & \\
\hline
\end{tabular}

Table 5: Residuals for STT 358 AB from 2012.6 to 2013.5
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Designation & WDS & Nights & Date & \(\theta\) & p & \(\Delta \theta\) & \(\Delta \rho\) & Ref. \\
\hline \multirow{3}{*}{STT 358 AB} & \multirow{3}{*}{\(18359+1659\)} & 4 & 2012.6 & 150.2 & 1.63 & 2.3 & 0.11 & \multirow{3}{*}{Hei1995} \\
\hline & & 2 & 2013.5 & 149.1 & 1.6 & 1.7 & 0.08 & \\
\hline & & 2 & 2014.5 & 149 & 1.6 & 2.2 & 0.09 & \\
\hline
\end{tabular}
(Continued from page 102)
Courtot, Jean - Francois, "Micrometer measures of double stars in 2009," The Webb Society Double Star Section Circular No 18, 2010, 5-7.
Hartkopf, William I., Mason, Brian D., Sixth Catalog of Orbits of Visual Binary Stars.
http://ad.usno.navy.mil/wds/orb6.html
Maiwald, Marc Oliver, "Double Star Measurements Using a Small Refractor," Journal of Double Star Observations, 9, 189-194, 2013.
Maiwald, Marc Oliver, "Double Star Observations with a 150mm Refractor in 2013", JDSO, 10, 185 - 192, 2014.

Napier - Munn, Tim, Jenkinson, Graeme, "Analysis of Errors in the Measurement of Double Stars Using Imaging and the Reduc Software," JDSO, 10, 193 198, 2104.
Workman, Brian, 2013, Binary Star Calculator, http://www.saguaroastro.org/content/db/ binaries_6th_Excel97.zip

\title{
Searching for New Double Stars with a Computer
}

\author{
T. V. Bryant III \\ Little Tycho Observatory \\ 703 McNeill Road, Silver Spring, Md 20910 \\ rkk_529@hotmail.com \\ Reprinted from http://mainsequence.org/html/wds/newPairs/FindingUnlistedDoubleStars.html
}

\begin{abstract}
The advent of computers with large amounts of RAM memory and fast processors, as well as easy internet access to large online astronomical databases, has made computer searches based on astrometric data practicable for most researchers. This paper describes one such search that has uncovered hitherto unrecognized double stars.
\end{abstract}

\section*{Introduction}

Recently, four previously unlisted double stars were added to the Washington Double Star Catalog (WDS) \({ }^{1}\) as a result of the process to be described in this article. They are shown in Table 1.

These pairs were located by a computer search of the fourth USNO CCD Astrographic Catalog \({ }^{2}\) (UCAC4). Using the CD provided by the United States Naval Observatory \({ }^{3}\) (USNO), a suite of programs written in Perl and C was used to search the UCAC4 for candidate binary pairs that were not in the WDS.

Pairs that passed this test were then placed into a list for manual verification, using the Aladin \({ }^{4}\) tool.

Using Aladin, the candidate pair was manually examined. Pairs that seemed to be associated with nearby clusters were eliminated, as were pairs enmeshed in nebulosity to the point that they could not be accurately measured with Aladin. Pairs that passed these tests were then measured for position angle and separation,
using Aladin's UCAC4 template on the DSS plate, and placed in a final list of candidates.

The four entries from this final list of pairs were chosen based on their visibility in the summer sky from \(39^{\circ}\) north latitude, brightness, separation, and a large proper motion. These stars were observed from the Little Tycho Observatory, and then submitted to William Hartkopf \({ }^{5}\) of the USNO.

\section*{Search for Unlisted Double Stars from the UCAC4 Data}

The instructions given below have been shown to work in a Linux development environment. While they can be replicated in other environments, e.g, an Apple Mac, or the Cygwin environment on a Windows PC, they have not been tested in these environments.

\section*{Obtain a copy of the UCAC4 data.}

You'll need to send an email to brenda.hicks@navy.mil with "UCAC4" in subject and your full name and postal mailing address in the body of

Table 1: Double stars recently found by computer search and added to the WDS.
\begin{tabular}{|c|c|c|c|}
\hline RA + Dec: J2000 & UCAC4 Designation & Primary mv & Secondary mv \\
\hline \(16: 39: 17.31+26: 27: 28.92\) & \(583-54539\) & 10.15 & 11.325 \\
\hline \(17: 16: 01.38+25: 16: 05.87\) & \(577-56486\) & 10.652 & 12.202 \\
\hline \(19: 50: 41.95+20: 18: 29.21\) & \(552-99070\) & 9.22 & 10.5 \\
\hline \(20: 43: 31.93+52: 16: 35.77\) & \(712-76210\) & 9.51 & 10.96 \\
\hline
\end{tabular}

\section*{Searching for New Double Stars with a Computer}
your e-mail.
A CD of the data will be sent to your address. When it arrives, mount the \(\mathrm{CD}(\mathrm{s})\) in your computer's CD drive and download the 900 UCAC4 declination zones to a directory on your computer.

\section*{Obtain a copy of the WDS data.}

On a computer equipped with the wget program and connected to the internet, the following command should do the trick:
```

 cd /DirectoryWhereYouWantToStoreTheData/
 wget -r -O wdsData http://ad.usno.navy.mil/wds/
 Webtextfiles/wdsweb_summ.txt

```

The file wdsData should now be downloaded to your current working directory:

DirectoryWhereYouWantToStoreTheData.

\section*{Getting the code}

It is assumed that the reader is somewhat familiar with programming and the C and Perl languages in particular in this section.

Code can be obtained from GitHub, or the author's web site, http://www.mainsequence.org/html/wds/ newPairs.

In downloading code from the author's web site, you can list the program by left-clicking on the link below, and download it by right-clicking (Ctl-click on a Mac)

The WDS is listed in order of its positional Ids, a low precision J2000 coordinate designation, as opposed to a pair's precise coordinates. A short Perl program has been written to extract the precise coordinates from the WDS which can be downloaded from
```

getWDS_PrecisionCoordinates.pl

```

The program is run from the directory containing a recent copy of the WDS catalog.

The resultant file, WDS.pre, is then sorted using the unix sort command:
```

sort -n WDS.pre > wdsPrecisionCoordinates

```

As the UCAC4, as of this writing, consists of 113,780,093 stars, it was not efficient to search the entire declination range of the catalog for each of the candidates. MkUCAC4_Regions.c reads the catalog and then splits it into files, each of which covers approximately a square degree of sky. Stars that border (within 30") a square degree are also included in the file. In this way, when a candidate star is searched for possible companions, only a single square degree need be searched. The program also creates a list of possible primary candidate stars, all brighter than mvC (Default setting for this is \(11000=11.0 \mathrm{mv}\) ) that findUnlistedDoubles.c will use for the search. Click on the link below to download the code.

\section*{mkUCAC4_Regions.c}

Edit the program's holding directory location in lines 65 and 68 to match where you would like its square degree files to be written. The directory used to store the UCAC4 data must also be changed in line 104.

The program can be compiled using this command:
gcc -std=gnu99 -o2 -o mkr -W mkUCAC4_Regions.c -lm
and run using this: mkr

\section*{Find candidate binary pairs not in the WDS from UCAC4 data}

Now that we have the precision coordinates from the WDS and the UCAC4 data for the brighter stars stored in square degree files, we can search for pairs not in the WDS with findUnlistedDoubles.c. Click on the link below.

\section*{findUnlistedDoubles.c}

Many of the search parameters set by both programs can be changed, the programs recompiled, and different results obtained. If a very loose set of parameters is used, many thousands of possible pairs can be generated. More restrictive parameters will result in fewer pairs. Once the user is familiar with editing and compiling the programs, many interesting lists can be generated. Each list takes only about 5 minutes to compile and create on the author's machine. It complies with a command similar to the one given above.

The program's output file is in HTML format. Read it in your browser by opening it as a file. A sample output can be seen at the link listing 1.

The program ships with these default parameters. Their default values are the numbers in parentheses following the parameter's name:
- Only stars brighter than mvC (11000) are considered as primary candidates. Generally, the brighter the star, the more information about it is to be found in the literature, simplifying subsequent study. This can be changed by changing the value of mvC in mkUCAC4_Regions.c.
- Secondary stars must be brighter than mvS (12000) to be considered. This again can be changed by changing mvS in findUnlistedDoubles.c and mkUCAC4_Regions.c. Note that the UCAC4 does not list many stars fainter than 16.0 mv (16000).
- The primary and secondary should be within dMv (1000) of each other. This is a fairly arbitrary restriction, and is used to simply cut down on the number of pairs found.

\section*{Searching for New Double Stars with a Computer}
- XXX (30) is the size of the region of sky that will be searched, in arc seconds. A box of sky twice this distance on a side will be searched for possible companions to a given candidate star. This can be changed by changing XXX in both mkUCAC4_Regions.c and findUnlistedDoubles.c. Note: The programs have only been tested with XXX set to 30 ". Change this at your own risk!
- The minimum separation between the stars should be minSep (10) arc seconds or more. Pairs are manually verified by examining them on DSS plates. A pair of stars with less separation can be very difficult to differentiate from a single star.
- The larger the maximum separation, maxSep (30), the less likely a pair will be physical. Unless XXX is changed, 30 should be the largest separation used.
- The average proper motion of the two stars must be larger than minPM (50) milliarcseconds per year (mas/yr). This will help to eliminate slow moving pairs that are optical.
- The difference between the average proper motion of the candidate pair and their individual proper motions should be less than a given quantity pmR (5). This condition helps to eliminate possible optical pairs, and is defined as the differences between the primary and secondary proper motions. For example, if a pair had an average proper motion of 70 mas/yr but one component was moving north of the average proper motion at \(30 \mathrm{mas} / \mathrm{yr}\), the other south at \(20 \mathrm{mas} / \mathrm{yr}\), the pair would be rejected because of their individually disparate, though large, proper motions.
- There must not be a binary listed by the WDS within XXX arc seconds of the candidate pair. Visual magnitudes were ignored for this condition, as many WDS listings show magnitudes different from the UCAC4 magnitudes.
- The program converts all of its angles to radian measure for calculation, and then back to degrees or hours, minutes, and seconds for output.
- The output coordinates are in a format such that you can easily drag and drop them into DSS display tools such as Aladin, GoogleSky, or WikiSky.
- When a parameter is changed, the changed program must be recompiled before the changes will take effect.
- Directories that hold the UCAC4, WDS, and output data are as found on the author's computer. These will probably need to be changed to fit the user's computer.

\section*{A sample list}

A sample list of possible binary stars not in the WDS is given in Table 2 at the end of this article. Column headers are as follows:
- RA and Dec are the J2000 coordinates of the primary.
- mv and mvb are the visual magnitudes of the primary and secondary, respectively. They are in units of millimagnitudes, that is \(9000=9.0 \mathrm{mv}\).
- mv src and mvb src are the source of the magnitude measurement, APASS (the AAVSO survey) or UCAC4 (the UCAC4 model magnitude).
- \(\rho\) is the separation of the pair, in arc seconds.
- Double Flag is the UCAC4 double flag for the primary.
- Primary and secondary proper motion in both right ascension and declination are given in milliarcseconds per century.
- A and B UCAC4 id give the UCAC4 declination zone and star number in that zone of the primary and secondary, respectively.
- Comments can be edited or added as further study of a pair is done.

\section*{Acknowledgments}

The editorial assistance of Kathleen Bryant, Thomas Corbin, and R. Kent Clark are gratefully recognized.

\section*{References}
1) The Washington Double Star Catalog, Brian D. Mason, Gary L. Wycoff, William I. Hartkopf, Geoffrey G. Douglass, and Charles E. Worley, 2001.
2) The Fourth US Naval Observatory CCD Astrograph Catalog (UCAC4), Zacharias, et al, 2012. http:// www.usno.navy.mil/USNO/astrometry/optical-IRprod/ucac
3) USNO web site: http://aa.usno.navy.mil
4) Aladin web site: http://aladin.u-strasbg.fr
5) William Hartkopf, Astrometry Department, U.S. Naval Observatory 3450 Massachusetts Ave, NW, Washington, DC 20392

\section*{Searching for New Double Stars with a Computer}

Table 2. Non-WDS Pairs
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline RA Dec & mv & \[
\begin{array}{r}
\mathrm{mv} \\
\mathrm{src}
\end{array}
\] & mvb & \begin{tabular}{l}
mvb \\
src
\end{tabular} & sep. & \begin{tabular}{l}
Dbl \\
Flag
\end{tabular} & Pri
PM in RA & Pri
PM in
Dec & \begin{tabular}{l}
Sec. \\
PM in \\
RA
\end{tabular} & Sec. PM in Dec & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { A UCAC4 } \\
& \text { id }
\end{aligned}
\]} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { B UCAC4 } \\
& \text { id }
\end{aligned}
\]} \\
\hline 05:37:50.8 +43:01:42.54 & 9920 & APASS & 10306 & APASS & 17.32 & 3 & -81 & -13 & -63 & -19 & 666 & 960 & 666 & 961 \\
\hline 05:39:32.51-24:19:03.2 & 9564 & APASS & 10112 & APASS & 21.53 & 0 & -142 & -185 & -149 & -165 & 329 & 434 & 329 & 435 \\
\hline 05:41:06.36-24:34:06.80 & 9777 & APASS & 9958 & APASS & 20.79 & 0 & -99 & -92 & -307 & -168 & 328 & 446 & 328 & 447 \\
\hline 05:42:39.68-17:47:32.86 & 9880 & APASS & 10799 & APASS & 20.89 & 0 & -52 & -181 & -126 & -590 & 362 & 408 & 362 & 409 \\
\hline 05:42:06.21 +12:24:25.20 & 9895 & APASS & 9976 & APASS & 26.60 & 0 & 23 & -138 & 0 & -134 & 513 & 464 & 513 & 465 \\
\hline 05:07:34.24-54:59:20.44 & 8717 & APASS & 9063 & APASS & 15.69 & 3 & -483 & 535 & -1031 & -374 & 176 & 237 & 176 & 236 \\
\hline 05:07:09.70-18:18:07.83 & 9963 & APASS & 10690 & APASS & 27.23 & 0 & -74 & -46 & -66 & -57 & 359 & 326 & 359 & 325 \\
\hline 06:15:49.19 +27:13:26.8 & 9889 & APASS & 9962 & APASS & 8.52 & 35 & 23 & -67 & -21 & -100 & 587 & 720 & 587 & 719 \\
\hline 06:18:28.41-22:49:44.53 & 9974 & APASS & 10141 & APASS & 25.49 & 0 & 41 & 180 & -76 & 164 & 336 & 559 & 336 & 558 \\
\hline 06:34:30.0 +13:02:01.93 & 9713 & APASS & 10315 & APASS & 27.87 & 0 & -16 & -69 & -9 & -58 & 516 & 829 & 516 & 830 \\
\hline 06:41:54.35 +23:56:02.41 & 9666 & APASS & 10431 & APASS & 27.95 & 0 & 16 & -55 & -24 & -78 & 570 & 866 & 570 & 867 \\
\hline 06:42:51.75 +26:25:09.4 & 9547 & APASS & 9564 & APASS & 25.01 & 0 & -19 & -76 & -3 & -71 & 583 & 879 & 583 & 881 \\
\hline 06:43:16.39-11:04:02.59 & 9920 & APASS & 10296 & APASS & 29.66 & 0 & -64 & 129 & -21 & -30 & 395 & 656 & 395 & 655 \\
\hline 06:43:28.69+21:33:59.93 & 9278 & APASS & 9445 & APASS & 25.48 & 0 & -12 & -52 & -81 & -37 & 558 & 891 & 558 & 890 \\
\hline 06:46:26.29 +20:52:52.31 & 9771 & APASS & 9777 & APASS & 11.40 & 36 & -82 & -109 & -88 & -135 & 555 & 927 & 555 & 926 \\
\hline 06:48:42.82 +16:07:49.45 & 9988 & APASS & 10425 & APASS & 17.86 & 0 & -421 & -90 & -419 & -76 & 531 & 913 & 531 & 915 \\
\hline 06:52:42.61-05:25:59.44 & 9163 & APASS & 10136 & APASS & 18.74 & 36 & -15 & 22 & -80 & 22 & 423 & 772 & 423 & 771 \\
\hline 06:53:40.34-24: & 9207 & APASS & 10180 & APASS & 23.59 & 3 & -90 & \(-1520\) & -90 & \(-1466\) & 329 & 720 & 329 & 721 \\
\hline 06:54:12.43-1 & 10000 & APASS & 10856 & APASS & 22.34 & 0 & -133 & -45 & -24 & 33 & 386 & 765 & 386 & 766 \\
\hline 06:55:25.40 +13:48:55.72 & 9532 & APASS & 10269 & APASS & 22.77 & 0 & 32 & -31 & -42 & -81 & 520 & 900 & 520 & 899 \\
\hline 06:57:12.90 +11:00:36.72 & 9770 & APASS & 10408 & APASS & 22.10 & 0 & -22 & -70 & -18 & -62 & 506 & 857 & 506 & 856 \\
\hline 06:57:42.60-39:40:12.58 & 9679 & APASS & 10441 & APASS & 21.90 & 0 & 4 & -44 & -595 & 569 & 252 & 532 & 252 & 533 \\
\hline 07:13:19.16 +12:25:29.44 & 9970 & APASS & 10556 & APASS & 22.02 & 0 & -28 & -320 & -61 & -37 & 513 & 980 & 513 & 981 \\
\hline 07:15:00.56-21:53:21.23 & 9181 & APASS & 9374 & APASS & 21.49 & 3 & -136 & 191 & -42 & -19 & 341 & 870 & 341 & 869 \\
\hline 07:15:57.1-11:08:00.18 & 9909 & APASS & 10017 & APASS & 13.27 & 0 & -72 & 8 & -86 & -10 & 395 & 859 & 395 & 858 \\
\hline 07:16:17.25-41:49:03.69 & 9748 & APASS & 10519 & APASS & 28.53 & 0 & -51 & -36 & 12 & -77 & 241 & 613 & 241 & 612 \\
\hline 07:18:41.98-24:58:12.27 & 9495 & APASS & 9978 & APASS & 22.96 & 4 & -41 & 80 & -36 & 21 & 326 & 863 & 326 & 862 \\
\hline 07:18:41.98-24:58:12.27 & 9495 & APASS & 10479 & APASS & 18.24 & 4 & -41 & 80 & -43 & 53 & 326 & 863 & 326 & 868 \\
\hline 07:19:50.28 +19:42:21.13 & 9407 & APASS & 10099 & APASS & 20.96 & 0 & -46 & -45 & -45 & -43 & 549 & 1055 & 549 & 1056 \\
\hline 07:22:35.70 +06:19:40.23 & 9912 & APASS & 10912 & APASS & 26.02 & 0 & -20 & -91 & -25 & -111 & 482 & 1080 & 482 & 1082 \\
\hline 07:33:07.89-19:28:05.21 & 9739 & APASS & 10104 & APASS & 16.36 & 0 & -173 & 153 & -10 & 13 & 353 & 978 & 353 & 979 \\
\hline 07:37:21.38-28:05:21.72 & 9357 & APASS & 9521 & APASS & 26.41 & 0 & -136 & 144 & -54 & 85 & 310 & 992 & 310 & 991 \\
\hline 07:38:53.92-27:22:34.36 & 9956 & APASS & 10824 & APASS & 28.47 & 36 & 44 & -239 & -286 & -158 & 314 & 961 & 314 & 962 \\
\hline 07:42:07.78-31:41:39.46 & 9450 & APASS & 9668 & APASS & 19.72 & 35 & -194 & 142 & -18 & 199 & 292 & 868 & 292 & 869 \\
\hline 07:47:16.73-57:16:01.96 & 9911 & APASS & 10170 & APASS & 26.91 & 0 & -122 & 320 & 2 & 126 & 164 & 490 & 164 & 491 \\
\hline 07:48:35.21+42:50:53.81 & 9875 & APASS & 10608 & APASS & 24.27 & 0 & -136 & -57 & -315 & -381 & 665 & 1384 & 665 & 1383 \\
\hline 07:50:10.53-12:21:36.60 & 9452 & APASS & 10123 & APASS & 27.76 & 0 & -96 & -140 & -11 & 26 & 389 & 1076 & 389 & 1077 \\
\hline 07:54:19.82-27:01:16.48 & 9914 & APASS & 10500 & APASS & 26.08 & 0 & 48 & 113 & -50 & 151 & 315 & 1085 & 315 & 1084 \\
\hline 07:58:01.13-43:54:12.61 & 9682 & APASS & 10635 & APASS & 29.03 & 0 & -78 & 61 & -121 & 61 & 231 & 810 & 231 & 811 \\
\hline 07:59:50.7 +19:46:58.2 & 9729 & APASS & 10547 & APASS & 18.55 & 0 & -48 & -24 & -52 & -662 & 549 & 1179 & 549 & 1180 \\
\hline 07:07:14.49-13:05:07.13 & 9395 & APASS & 10165 & APASS & 17.36 & 0 & -72 & -15 & -64 & -3 & 385 & 787 & 385 & 788 \\
\hline 07:07:48.51-02:49:56.75 & 9756 & APASS & 10543 & APASS & 28.41 & 0 & -17 & -74 & -46 & -54 & 436 & 1031 & 436 & 1032 \\
\hline 07:08:09.72 +08:33:05.19 & 9591 & APASS & 10152 & APASS & 29.30 & 0 & -88 & 8 & -46 & -58 & 493 & 1118 & 493 & 1120 \\
\hline 08:10:49.46-12:46:06.61 & 9979 & APASS & 10970 & APASS & 23.65 & 0 & -134 & -315 & -19 & -33 & 387 & 1249 & 387 & 1248 \\
\hline
\end{tabular}

Table 2 continues on next page.

\section*{Searching for New Double Stars with a Computer}

Table 2 (continued). Non-WDS Pairs
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline RA Dec & mv & \[
\begin{array}{r}
\mathrm{mv} \\
\mathrm{src}
\end{array}
\] & mvb & \[
\begin{aligned}
& \text { mvb } \\
& \text { src }
\end{aligned}
\] & sep. & \begin{tabular}{l}
Dbl \\
Flag
\end{tabular} & \begin{tabular}{l}
Pri \\
PM in \\
RA
\end{tabular} & \begin{tabular}{l}
Pri \\
PM in Dec
\end{tabular} & \begin{tabular}{l}
Sec. \\
PM in \\
RA
\end{tabular} & Sec. PM in Dec & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { A UCAC4 } \\
& \text { id }
\end{aligned}
\]} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { B UCAC4 } \\
& \text { id }
\end{aligned}
\]} \\
\hline 08:12:07.94 -37:39:27.58 & 9562 & APASS & 9799 & APASS & 20.43 & 0 & -39 & 34 & -58 & 64 & 262 & 839 & 262 & 838 \\
\hline 08:13:23.20-32:29:59.67 & 9281 & APASS & 9364 & APASS & 8.15 & 0 & -62 & 36 & -1216 & -802 & 288 & 1033 & 288 & 1032 \\
\hline 08:21:02.30 +4:59:30.48 & 9988 & APASS & 10357 & APASS & 27.36 & 0 & -564 & -902 & 213 & 8 & 475 & 1289 & 475 & 1288 \\
\hline 08:22:42.75-12:05:00.27 & 9556 & APASS & 10498 & APASS & 14.05 & 36 & -180 & 169 & -54 & -1 & 390 & 1282 & 390 & 1284 \\
\hline 08:26:34.34-23:05:01.24 & 9252 & APASS & 10142 & APASS & 24.31 & 0 & -181 & 390 & 13 & 74 & 335 & 1406 & 335 & 1405 \\
\hline 08:26:45.76-31:20:45.97 & 9802 & APASS & 9933 & APASS & 29.55 & 0 & -80 & 112 & -117 & 137 & 294 & 1234 & 294 & 1233 \\
\hline 08:30:46.92-33:06:11.41 & 9893 & APASS & 10729 & APASS & 24.26 & 0 & -37 & -108 & -45 & 18 & 285 & 1160 & 285 & 1161 \\
\hline 08:34:00.5-13:41:47.6 & 9751 & APASS & 10456 & APASS & 24.59 & 0 & -120 & -427 & -9 & 36 & 382 & 1352 & 382 & 1353 \\
\hline 08:40:21.21-26:15:19.24 & 9837 & APASS & 9995 & APASS & 22.31 & 0 & -139 & 40 & -21 & 62 & 319 & 1483 & 319 & 1484 \\
\hline 08:42:24.29-37:21:43.79 & 9973 & APASS & 10757 & APASS & 29.18 & 0 & -77 & 8 & -60 & -37 & 264 & 1134 & 264 & 1135 \\
\hline 08:49:51.36-52:04:29.41 & 9658 & APASS & 10367 & APASS & 23.19 & 0 & -153 & 214 & -89 & 110 & 190 & 723 & 190 & 724 \\
\hline 08:50:07.33-45:19:29.36 & 9289 & APASS & 10022 & APASS & 27.26 & 35 & -26 & 56 & -102 & 39 & 224 & 1037 & 224 & 1038 \\
\hline 08:06:50.27-30:47:28.40 & 9943 & APASS & 10384 & APASS & 20.02 & 0 & -100 & 5 & -70 & -9 & 297 & 1109 & 297 & 1110 \\
\hline 08:08:54.89-24:49:15.73 & 9874 & APASS & 10812 & APASS & 21.10 & 0 & 1 & 14 & -89 & -80 & 326 & 1296 & 326 & 1295 \\
\hline 09:00:48.10-50:57:37.47 & 9912 & APASS & 10704 & APASS & 27.85 & 0 & -353 & 333 & 8 & 90 & 196 & 799 & 196 & 800 \\
\hline 09:10:59.84-35:25:17.44 & 9749 & APASS & 10133 & APASS & 22.68 & 3 & -84 & 35 & 67 & 71 & 273 & 1229 & 273 & 1227 \\
\hline 09:14:25.3-52:52:06.39 & 9940 & APASS & 10043 & APASS & 12.22 & 0 & -128 & -37 & -105 & -9 & 186 & 867 & 186 & 868 \\
\hline 09:19:04.61-44:10:31.68 & 9732 & APASS & 10391 & APASS & 17.54 & 35 & -53 & 32 & -17 & 43 & 230 & 1087 & 230 & 1088 \\
\hline 09:20:15.2 +0:35:50.46 & 9755 & APASS & 10594 & APASS & 28.33 & 0 & -194 & 5 & -584 & 130 & 453 & 1479 & 453 & 1480 \\
\hline 09:21:40.55-44:55:41.10 & 9869 & APASS & 10159 & APASS & 20.20 & 0 & -45 & 44 & -129 & 9 & 226 & 1080 & 226 & 1079 \\
\hline 09:30:05.52-15:38:47.42 & 9918 & APASS & 10710 & APASS & 22.47 & 0 & -102 & 20 & -762 & -475 & 372 & 1578 & 372 & 1577 \\
\hline 09:31:19.76-47:06:52.55 & 9859 & APASS & 10443 & APASS & 19.54 & 0 & 81 & 115 & -153 & -23 & 215 & 1119 & 215 & 1118 \\
\hline 09:32:37.12-52:42:00.7 & 9897 & APASS & 9996 & APASS & 15.18 & 35 & -38 & 175 & -93 & 11 & 187 & 920 & 187 & 919 \\
\hline 09:36:42.24-59:41:55.90 & 9753 & APASS & 10252 & APASS & 19.74 & 0 & -93 & 66 & -356 & -1168 & 152 & 777 & 152 & 778 \\
\hline 09:37:50.97-36:14:53.91 & 9887 & APASS & 10617 & APASS & 23.44 & 0 & 46 & \(-271\) & -46 & -26 & 269 & 1380 & 269 & 1379 \\
\hline 09:37:06.51-51:35:38.26 & 9709 & APASS & 10148 & APASS & 10.57 & 0 & -129 & 31 & -344 & 1520 & 193 & 927 & 193 & 928 \\
\hline 09:38:57.35-33:45:03.43 & 9489 & APASS & 9555 & APASS & 21.97 & 0 & -699 & -826 & -165 & 78 & 282 & 1486 & 282 & 1485 \\
\hline 09:52:10.24-53:53:47.1 & 9266 & APASS & 9313 & APASS & 10.78 & 0 & -244 & -75 & -113 & 98 & 181 & 1105 & 181 & 1106 \\
\hline 09:55:52.34-56:07:10.83 & 9976 & APASS & 10000 & APASS & 20.19 & 0 & 0 & 193 & -108 & 22 & 170 & 1028 & 170 & 1027 \\
\hline 09:57:37.37-54:40:33.74 & 9949 & APASS & 9964 & APASS & 19.58 & 3 & -28 & 46 & -80 & 47 & 177 & 1056 & 177 & 1057 \\
\hline 09:06:36.90-64:55:51.30 & 9802 & APASS & 10162 & APASS & 17.13 & 35 & -81 & 97 & -266 & 132 & 126 & 529 & 126 & 530 \\
\hline 10:10:21.21-67:15:48.21 & 8637 & APASS & 9010 & APASS & 21.83 & 3 & -108 & 62 & -1992 & 1789 & 114 & 651 & 114 & 652 \\
\hline \(10: 13: 28.6-57: 53: 01.68\) & 9923 & APASS & 10103 & APASS & 22.50 & 0 & -307 & 338 & -2 & 99 & 161 & 1037 & 161 & 1038 \\
\hline \(10: 22: 39.4-37: 44: 59.69\) & 9744 & APASS & 9849 & APASS & 28.41 & 0 & -118 & 29 & -496 & 115 & 262 & 1436 & 262 & 1435 \\
\hline 10:24:28.70-58:49:47.18 & 9061 & APASS & 9173 & APASS & 10.74 & 36 & -147 & 222 & -601 & 574 & 156 & 1168 & 156 & 1167 \\
\hline 10:27:37.73-57:38:23.71 & 9160 & APASS & 9195 & APASS & 8.98 & 36 & -58 & 35 & -121 & -279 & 162 & 1168 & 162 & 1167 \\
\hline 10:31:41.15-57:18:37.66 & 8824 & APASS & 8850 & APASS & 9.15 & 0 & 0 & 0 & -114 & 29 & 164 & 1208 & 164 & 1207 \\
\hline 10:32:07.37-32:10:33.15 & 9648 & APASS & 9666 & APASS & 22.02 & 0 & 34 & -68 & -120 & -38 & 290 & 1683 & 290 & 1682 \\
\hline 10:33:37.60-59:35:21.28 & 9970 & APASS & 10009 & APASS & 16.75 & 0 & -94 & 77 & -164 & 127 & 153 & 1213 & 153 & 1212 \\
\hline 10:42:33.6-62:11:51.53 & 8933 & APASS & 9127 & APASS & 23.99 & 36 & -124 & -38 & -101 & 29 & 140 & 995 & 140 & 994 \\
\hline 10:44:05.54-62:08:02.1 & 10000 & APASS & 10042 & APASS & 8.88 & 36 & 112 & -250 & -177 & 74 & 140 & 1007 & 140 & 1006 \\
\hline 10:47:17.34-62:06:38.44 & 9583 & APASS & 9632 & APASS & 14.56 & 2 & -273 & -8 & -435 & 1950 & 140 & 1043 & 140 & 1044 \\
\hline 10:49:33.17 -62:49:44.29 & 9880 & APASS & 10009 & APASS & 18.20 & 0 & 0 & 0 & -102 & 78 & 136 & 956 & 136 & 957 \\
\hline 10:50:40.32-61:30:11.9 & 9756 & APASS & 9759 & APASS & 9.00 & 0 & 10 & 124 & -100 & 4 & 143 & 1168 & 143 & 1169 \\
\hline
\end{tabular}

Table 2 continues on next page.

\section*{Searching for New Double Stars with a Computer}

Table 2 (continued). Non-WDS Pairs
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline RA Dec & mv & \[
\begin{array}{r}
\mathrm{mv} \\
\mathrm{src}
\end{array}
\] & mvb & \begin{tabular}{l}
mvb \\
src
\end{tabular} & sep. & \[
\begin{gathered}
\text { Dbl } \\
\text { Flag }
\end{gathered}
\] & Pri
PM in
RA & Pri PM in Dec & Sec. \(P M\) in RA & Sec. PM in Dec & \[
\begin{aligned}
& \text { A UCAC4 } \\
& \text { id }
\end{aligned}
\] & \[
\begin{aligned}
& \text { B UCAC4 } \\
& \text { id }
\end{aligned}
\] \\
\hline 10:56:07.4 -59:48:17.76 & 9958 & APASS & 10099 & APASS & 14.87 & 35 & 0 & 0 & -112 & 75 & 1511531 & 1511530 \\
\hline 10:09:05.78 +0:22:56.95 & 9855 & APASS & 10824 & APASS & 26.63 & 0 & 9 & 104 & -207 & 229 & 4521620 & 4521619 \\
\hline 11:01:28.65-61:58:58.1 & 9983 & APASS & 10200 & APASS & 14.09 & 35 & -55 & -17 & -1940 & -1673 & 1411175 & 1411176 \\
\hline 11:16:01.70-55:13:33.60 & 9757 & APASS & 9825 & APASS & 18.83 & 36 & -65 & 16 & -219 & -27 & 1741551 & 1741552 \\
\hline 11:17:57.39-27:02:07.46 & 9774 & APASS & 9935 & APASS & 8.29 & 0 & 0 & 0 & -580 & 27 & 3151863 & 3151864 \\
\hline 11:36:15.97-62:28:56.77 & 9397 & APASS & 9950 & APASS & 21.66 & 0 & -431 & -258 & -5 & 21 & 1381205 & 1381206 \\
\hline 11:36:22.4-61:35:38.90 & 8983 & APASS & 9549 & APASS & 25.80 & 36 & -61 & 70 & -59 & -196 & 1431581 & 1431580 \\
\hline 11:36:32.49-58:55:01.12 & 9842 & APASS & 10559 & APASS & 19.57 & 0 & -88 & 3 & -133 & 20 & 1561840 & 1561838 \\
\hline 11:36:37.77-34:38:47.0 & 8773 & APASS & 9201 & APASS & 4.72 & 3 & 0 & 0 & -2156 & 1217 & 2771678 & 2771677 \\
\hline 11:36:50.33-61:40:07.77 & 9182 & APASS & 9327 & APASS & 7.30 & 25 & -309 & -451 & -38 & 54 & 1421597 & 1421598 \\
\hline 11:05:37.90-58:45:49.18 & 9629 & APASS & 9880 & APASS & 25.25 & 0 & -94 & 44 & -86 & 48 & 1571551 & 1571550 \\
\hline 11:05:56.36-58:49:08.59 & 9365 & APASS & 9506 & APASS & 23.48 & 36 & -55 & 62 & -104 & 65 & 1561559 & 1561558 \\
\hline 11:52:58.61-64:25:11.23 & 9994 & APASS & 10163 & APASS & 24.03 & 35 & -34 & -47 & -57 & -51 & 128948 & 128949 \\
\hline 11:53:32.52-62:48:04.65 & 9534 & APASS & 9884 & APASS & 11.74 & 0 & 339 & -74 & -376 & -93 & 1361270 & 1361269 \\
\hline 12:00:20.94-62:03:19.92 & 9635 & APASS & 9758 & APASS & 17.03 & 0 & 0 & 0 & -494 & 0 & 1401530 & 1401531 \\
\hline 12:10:01.88-65:42:26.96 & 9917 & APASS & 9969 & APASS & 26.63 & 36 & -62 & -31 & -38 & 11 & 122990 & 122989 \\
\hline 12:31:05.42-53:46:15.47 & 9757 & APASS & 10524 & APASS & 28.34 & 0 & -99 & -16 & -19 & 66 & 1821866 & 1821867 \\
\hline 12:36:01.95-34:11:59.87 & 9861 & APASS & 10149 & APASS & 19.22 & 0 & 103 & -54 & -422 & -331 & 2801843 & 2801842 \\
\hline 12:46:22.69-59:34:38.94 & 9804 & APASS & 10532 & APASS & 6.28 & 26 & 0 & 0 & -99 & -117 & 1532264 & 1532265 \\
\hline 13:39:09.69-64:01:11.70 & 9583 & APASS & 10452 & APASS & 9.60 & 35 & -426 & -156 & -402 & 158 & 1301530 & 1301529 \\
\hline 13:52:59.50-45:03:05.79 & 9803 & APASS & 10751 & APASS & 26.53 & 0 & -95 & -35 & -71 & -18 & 2251978 & 2251977 \\
\hline 13:07:20.69-71:01:11.21 & 9884 & APASS & 9891 & APASS & 13.28 & 0 & -188 & 285 & -97 & -40 & 95854 & 95855 \\
\hline 14:26:09.33-53:19:26.22 & 9994 & APASS & 10862 & APASS & 20.57 & 0 & -111 & -73 & 14 & -92 & 1842185 & 1842184 \\
\hline 14:31:29.43-49:41:52.28 & 9962 & APASS & 10490 & APASS & 21.66 & 0 & -131 & -35 & -26 & -79 & 2022079 & 2022080 \\
\hline 14:46:47.89-54:05:30.50 & 9175 & APASS & 9764 & APASS & 22.18 & 0 & -95 & -128 & -110 & -50 & 1802422 & 1802423 \\
\hline 14:55:38.58-54:38:02.33 & 9916 & APASS & 10300 & APASS & 12.18 & 35 & -39 & -71 & -50 & 9 & 1772402 & 1772401 \\
\hline 14:57:45.30-33:07:17.48 & 9616 & APASS & 10517 & APASS & 21.22 & 36 & -151 & 50 & -27 & -217 & 2852157 & 2852156 \\
\hline 14:08:51.20-43:04:35.78 & 9791 & APASS & 10214 & APASS & 24.32 & 0 & -226 & -60 & -168 & -126 & 2352047 & 2352046 \\
\hline 15:03:13.44-40:11:38.72 & 9809 & APASS & 10030 & APASS & 29.24 & 0 & 84 & -88 & -285 & -609 & 2502041 & 2502040 \\
\hline 15:30:55.1-63:20:54.21 & 9856 & APASS & 10398 & APASS & 21.78 & 36 & -5 & -172 & -186 & 29 & 1342312 & 1342311 \\
\hline 15:32:44.63 +12:44:27.42 & 9862 & APASS & 10352 & APASS & 10.32 & 36 & -437 & -112 & -272 & -67 & 5141652 & 5141651 \\
\hline 15:51:14.35-42:43:23.20 & 9881 & APASS & 10016 & APASS & 6.45 & 0 & 0 & 0 & -150 & -110 & 2372411 & 2372412 \\
\hline 15:07:35.3-54:19:54.81 & 9608 & APASS & 10544 & APASS & 25.10 & 0 & -43 & -15 & -96 & -28 & 1792475 & 1792474 \\
\hline 16:19:18.35-57:53:36.43 & 9378 & APASS & 10350 & APASS & 19.92 & 0 & 5 & -31 & -221 & -238 & 1612867 & 1612865 \\
\hline 16:33:32.25-53:20:21.49 & 9422 & APASS & 10189 & APASS & 29.64 & 0 & 25 & -62 & -58 & -197 & 1842845 & 1842846 \\
\hline 16:38:51.31-31:53:29.65 & 9857 & APASS & 10775 & APASS & 19.91 & 0 & -36 & -48 & -77 & -28 & 2912510 & 2912509 \\
\hline 16:43:01.42-40:42:33.90 & 9793 & APASS & 9931 & APASS & 11.29 & 0 & 0 & 0 & -124 & -243 & 2472452 & 2472451 \\
\hline 16:51:52.61-39:46:36.62 & 9840 & APASS & 10812 & APASS & 16.36 & 2 & -78 & -48 & -51 & -41 & 2522373 & 2522372 \\
\hline 16:09:21.36-60:39:12.84 & 9827 & APASS & 10393 & APASS & 27.57 & 2 & -90 & -76 & -90 & -34 & 1473159 & 1473157 \\
\hline 17:34:29.26-37:15:46.31 & 9933 & APASS & 10029 & APASS & 27.52 & 0 & -32 & -166 & -4 & 55 & 2642699 & 2642698 \\
\hline 17:04:48.3-39:18:54.70 & 9998 & APASS & 10026 & APASS & 10.01 & 25 & -92 & -12 & -1 & -28 & 2542457 & 2542459 \\
\hline 17:52:21.76-52:48:08.79 & 9204 & APASS & 9249 & APASS & 8.93 & 0 & -43 & -121 & -828 & -1106 & 1863207 & 1863206 \\
\hline 17:54:51.15 +10:42:47.53 & 9666 & APASS & 10067 & APASS & 25.27 & 0 & 14 & -414 & 31 & -415 & 5042100 & 5042101 \\
\hline 18:00:05.30 + \(30: 24: 26.48\) & 8941 & APASS & 9856 & APASS & 27.18 & 0 & 15 & 30 & -233 & -191 & 6031811 & 6031812 \\
\hline
\end{tabular}

Table 2 concludes on next page.

\section*{Searching for New Double Stars with a Computer}

Table 2 (conclusion). Non-WDS Pairs
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline RA Dec & mv & \[
\begin{array}{r}
\mathrm{mv} \\
\mathrm{src}
\end{array}
\] & mvb & \begin{tabular}{l}
mvb \\
src
\end{tabular} & sep. & \begin{tabular}{l}
Dbl \\
Flag
\end{tabular} & Pri
PM in RA & Pri PM in Dec & Sec. PM in RA & \begin{tabular}{l}
Sec. \\
PM in \\
Dec
\end{tabular} & \[
\begin{aligned}
& \text { A UCAC4 } \\
& \text { id }
\end{aligned}
\] & \[
\begin{aligned}
& \text { B UCAC4 } \\
& \text { id }
\end{aligned}
\] \\
\hline 18:10:15.1-27:20:02.61 & 9687 & APASS & 9778 & APASS & 7.79 & 0 & -155 & -913 & 11 & 115 & 3142791 & 3142792 \\
\hline 18:13:51.30-37:39:59.46 & 9650 & APASS & 10530 & APASS & 24.93 & 0 & -51 & -59 & -17 & -54 & 2622954 & 2622953 \\
\hline 18:15:14.95 +19:21:30.64 & 9656 & APASS & 9885 & APASS & 27.66 & 0 & 0 & -78 & -45 & -84 & 5471912 & 5471911 \\
\hline 18:19:15.23-28:45:40.20 & 9861 & APASS & 10355 & APASS & 15.12 & 0 & -78 & -309 & -4 & -20 & 3073092 & 3073091 \\
\hline 18:19:24.93-29:27:01.20 & 9819 & APASS & 10279 & APASS & 13.95 & 0 & -384 & 1 & -62 & -24 & 3033126 & 3033125 \\
\hline 18:21:16.74 +6:08:41.79 & 9877 & APASS & 10789 & APASS & 23.30 & 0 & -52 & -58 & -33 & -49 & 4812346 & 4812345 \\
\hline 18:22:04.51-22:17:52.10 & 7527 & APASS & 8497 & APASS & 20.58 & 6 & 50 & -230 & -80 & -134 & 3392709 & 3392710 \\
\hline 18:24:44.63-21:57:21.64 & 9796 & APASS & 10005 & APASS & 6.76 & 0 & -824 & -728 & -70 & -174 & 3412807 & 3412808 \\
\hline 18:38:19.0 -26:36:57.60 & 9575 & APASS & 9663 & APASS & 13.12 & 0 & -190 & -203 & -13 & -35 & 3173134 & 3173133 \\
\hline 18:04:25.58-40:01:20.90 & 9681 & APASS & 9960 & APASS & 25.68 & 2 & -50 & -40 & 11 & -54 & 2502697 & 2502696 \\
\hline 18:43:05.37 +22:47:01.66 & 9911 & APASS & 10774 & APASS & 24.38 & 35 & -58 & -95 & -5 & 8 & 5642101 & 5642100 \\
\hline 18:05:02.79 +74:47:25.17 & 9747 & APASS & 9955 & APASS & 10.30 & 25 & -169 & -94 & 98 & -260 & 824595 & 824594 \\
\hline 18:55:53.85 +12:13:13.69 & 9825 & APASS & 10039 & APASS & 8.49 & 0 & 0 & 0 & -126 & -67 & 5122364 & 5122363 \\
\hline 18:07:24.98-29:37:01.8 & 9531 & APASS & 9949 & APASS & 14.84 & 0 & 186 & 536 & -313 & -454 & 3023073 & 3023072 \\
\hline 18:09:34.78 +16:41:42.60 & 9904 & APASS & 10609 & APASS & 25.51 & 0 & -28 & 4 & -17 & -96 & 5342048 & 5342050 \\
\hline 19:00:00.37+13:42:29.58 & 9635 & APASS & 9726 & APASS & 17.64 & 35 & 47 & 28 & -83 & 82 & 5192287 & 5192288 \\
\hline 19:02:10.96-24:34:40.26 & 9735 & APASS & 10609 & APASS & 26.18 & 0 & -969 & -724 & 79 & -119 & 3283055 & 3283053 \\
\hline 19:03:27.0 +18:22:49.93 & 9831 & APASS & 9965 & APASS & 29.38 & 0 & -5 & 28 & -65 & -175 & 5422286 & 5422285 \\
\hline 19:34:34.66+31:07:26.22 & 9417 & APASS & 10066 & APASS & 28.98 & 0 & -24 & -103 & -21 & -107 & 6062174 & 6062173 \\
\hline 19:55:57.77+15:57:53.17 & 9343 & APASS & 9409 & APASS & 7.57 & 0 & 18 & -89 & -679 & -501 & 5302508 & 5302507 \\
\hline 19:56:52.49 +9:44:51.3 & 9357 & APASS & 10327 & APASS & 24.71 & 0 & -95 & -257 & 41 & -12 & 4992860 & 4992862 \\
\hline 19:09:11.17 +5:22:38.7 & 9674 & APASS & 10110 & APASS & 27.76 & 0 & -114 & -147 & -8 & -46 & 4772641 & 4772642 \\
\hline 2:29:56.75-3:19:07.36 & 9968 & APASS & 10725 & APASS & 24.25 & 0 & -603 & 197 & 294 & -388 & 434197 & 434196 \\
\hline 20:15:07.67+26:18:21.82 & 9965 & APASS & 10645 & APASS & 27.22 & 0 & -53 & -55 & -32 & -153 & 5822445 & 5822446 \\
\hline 20:03:21.65 +15:44:39.84 & 9582 & APASS & 10053 & APASS & 11.47 & 35 & 22 & -53 & -696 & -1078 & 5292655 & 5292654 \\
\hline 20:05:10.32 + 48:11:17.29 & 9562 & APASS & 9661 & APASS & 24.74 & 35 & 360 & -228 & 360 & -228 & 6912132 & 6912133 \\
\hline 21:39:52.7 +11:06:33.56 & 9784 & APASS & 10666 & APASS & 17.30 & 0 & -93 & -266 & 59 & 28 & 5063024 & 5063025 \\
\hline 21:46:16.77 +53:00:34.39 & 9774 & APASS & 10334 & APASS & 24.98 & 0 & -26 & -38 & -118 & -204 & 7162181 & 7162182 \\
\hline 21:49:20.99 +56:33:32.89 & 9720 & APASS & 10308 & APASS & 29.20 & 0 & -58 & -61 & -11 & -33 & 7331956 & 7331955 \\
\hline 22:38:54.26-5:51:32.88 & 9943 & APASS & 10364 & APASS & 18.00 & 0 & -3 & 13 & -142 & -188 & 4213025 & 4213024 \\
\hline 23:38:05.81 +45:02:14.97 & 9280 & APASS & 10020 & APASS & 27.22 & 0 & -113 & -1111 & 90 & -214 & 6763198 & 6763200 \\
\hline
\end{tabular}

Journal of Double Star Observations
April 1, 2015
Volume 11, Number 2

\section*{Editors}
R. Kent Clark

Rod Mollise
Russ Genet
Justin Sanders
Assistant Editors
Jo Johnson
Vera Wallen
Student Assistant Editor
Eric Weise
Advisory Editors
Brian D. Mason
William I. Hartkopf
Web Master
Michael Boleman

The Journal of Double Star Observations is an electronic journal published quarterly. Copies can be freely downloaded from http://www.jdso.org.

No part of this issue may be sold or used in commercial products without written permission of the Journal of Double Star Observations.
©2015 Journal of Double Star Observations

Questions, comments, or submissions may be directed to rclark@southalabama.edu or to rmollise@bellsouth.net

The Journal of Double Star Observations (JDSO) publishes articles on any and all aspects of astronomy involving double and binary stars. The JDSO is especially interested in observations made by amateur astronomers. Submitted articles announcing measurements, discoveries, or conclusions about double or binary stars may undergo a peer review. This means that a paper submitted by an amateur astronomer will be reviewed by other amateur astronomers doing similar work.

Not all articles will undergo a peer review. Articles that are of more general interest but that have little new scientific content such as articles generally describing double stars, observing sessions, star parties, etc. will not be refereed.

Submitted manuscripts must be original, unpublished material and written in English. They should contain an abstract and a short description or biography ( 2 or 3 sentences) of the author(s). For more information about format of submitted articles, please see our web site at http://www.jdso.org

Submissions should be made electronically via e-mail to rclark@southalabama.edu or to rmolise@bellsouth.net. Articles should be attached to the email in Microsoft Word, Word Perfect, Open Office, or text format. All images should be in jpg or fits format.


We're on the web!
http://www.jdso.org```

